Preview

Нейрохирургия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Регенеративные методы лечения травмы спинного мозга. Обзор литературы. Часть 4

https://doi.org/10.17650/1683-3295-2020-22-1-83-92

Полный текст:

Аннотация

Проблема лечения травматических повреждений спинного мозга – одна из наиболее сложных и актуальных для современной медицины. В подавляющем большинстве случаев травма спинного мозга (ТСМ) приводит к стойкой инвалидизации пациентов, что имеет как медико-социальные, так и экономические последствия для пациента, его семьи и государства. Современные методы лечения ТСМ обладают крайне ограниченной эффективностью и не позволяют в достаточной степени восстановить утраченные функции центральной нервной системы. Регенеративные методы и, в частности, клеточная терапия – очень многообещающее направление, дающее надежду на эффективное лечение ТСМ. В обзоре освещены проблемы эпидемиологии и патогенеза ТСМ, описаны существующие методы терапии, а также перспективные методы регенеративной терапии. Особое внимание уделено результатам доклинических и клинических исследований в области клеточной терапии. Обзор разделен на 4 части. В 4-й части обсуждается применение клеток пуповинной крови человека при ТСМ, в частности рассмотрены преимущества данного вида терапии, описан состав клеточной смеси пуповинной крови, а также освещены результаты доклинических и клинических исследований.

Об авторах

В. А. Смирнов
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н. В. Склифосовского Департамента здравоохранения г. Москвы»
Россия
129090 Москва, Большая Сухаревская пл., 3


А. А. Гринь
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н. В. Склифосовского Департамента здравоохранения г. Москвы»; ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А. И. Евдокимова» Минздрава России
Россия

129090 Москва, Большая Сухаревская пл., 3; 127473 Москва, ул. Делегатская, 20, стр. 1



Список литературы

1. Ali H., Bahbahani H. Umbilical cord blood stem cells – potential therapeutic tool for neural injuries and disorders. Acta Neurobiol Exp (Wars) 2010;70(3): 316–24.

2. Harris D.T. Non-haematological uses of cord blood stem cells. Br J Haematol 2009;147(2):177–84. DOI: 10.1111/j.1365-2141.2009.07767.x.

3. Muheremu A., Peng J., Ao Q. Stem cell based therapies for spinal cord injury. Tissue Cell 2016;48(4):328–33. DOI: 10.1016/j.tice.2016.05.008.

4. Newcomb J.D., Sanberg P.R., Klasko S.K., Willing A.E. Umbilical cord blood research: current and future perspectives. Cell Transplant 2007;16(2):151–8.

5. Newman M.B., Davis C.D., Kuzmin-Nichols N., Sanberg P.R. Human umbilical cord blood (HUCB) cells for central nervous system repair. Neurotox Res 2003;5(5):355–68. DOI: 10.1007/bf03033155.

6. Park D.H., Lee J.H., Borlongan C.V. et al. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev Rep 2011;7(1):181–94. DOI: 10.1007/s12015-010-9163-0.

7. Park S.I., Lim J.Y., Jeong C.H. et al. Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J Biomed Biotechnol 2012;2012:362473. DOI: 10.1155/2012/362473.

8. Rosenkranz K., Meier C. Umbilical cord blood cell transplantation after brain ischemia – from recovery of function to cellular mechanisms. Ann Anat 2011;193(4):371–9. DOI: 10.1016/j.aanat.2011.03.005.

9. Ryabov S.I., Zvyagintseva M.A., Pavlovich E.R. et al. Efficiency of transplantation of human placental/umbilical blood cells to rats with severe spinal cord injury. Bull Exp Biol Med 2014;157(1):85–8. DOI: 10.1007/s10517-014-2498-9.

10. Sun T., Ma Q.H. Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2013;47(3):938–45. DOI: 10.1007/s12035-012-8388-0.

11. Saporta S., Kim J.J., Willing A.E. et al. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003;12(3):271–8. DOI: 10.1089/152581603322023007.

12. Daar A.S., Bhatt A., Court E., Singer P.A. Stem cell research and transplantation: science leading ethics. Transplant Proc 2004;36(8):2504–6. DOI: 10.1016/j.transproceed.2004.08.129.

13. Henon P.R. Human embryonic or adult stem cells: an overview on ethics and perspectives for tissue engineering. Adv Exp Med Biol 2003;534:27–45. DOI: 10.1007/978-1-4615-0063-6_3.

14. ЕМИСС. Государственная статистика. Число зарегистрированных родившихся (оперативные данные). Доступно по: https://www.fedstat.ru/indicator/33555.

15. Centers for Disease Control and Prevention. National vital statistics reports. Available at: https://www.cdc.gov/nchs/products/nvsr.htm.

16. Broxmeyer H.E., Cooper S. High-efficiency recovery of immature haematopoietic progenitor cells with extensive proliferative capacity from human cord blood cryopreserved for 10 years. Clin Exp Immunol 1997;107 Suppl 1:45–53.

17. Cellular characteristics of cord blood and cord blood transplantation. Ed. by H.E. Broxmeyer. Bethesda (MD): American Association of Blood Banks Press, 1998. 227 p.

18. Broxmeyer H.E., Srour E.F., Hangoc G. et al. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci USA 2003;100(2):645–50. DOI: 10.1073/pnas.0237086100.

19. Ren Z., Zhang Y. Cells therapy for Parkinson’s disease – so close and so far away. Sci China C Life Sci 2009;52(7): 610–4. DOI: 10.1007/s11427-009-0090-8.

20. Sathananthan A.H., Trounson A. Human embryonic stem cells and their spontaneous differentiation. Ital J Anat Embryol 2005;110(2 Suppl 1):151–7.

21. Cohen R.I., Mckay R., Almazan G. Cyclic AMP regulates PDGF-stimulated signal transduction and differentiation of an immortalized optic-nerve-derived cell line. J Exp Biol 1999;202(Pt 4):461–73.

22. Gill B.C., Sun D.Z., Damaser M.S. Stem cells for urinary incontinence: functional differentiation or cytokine effects? Urology 2018;117:9–17. DOI: 10.1016/j.urology.2018.01.002.

23. Wade D.T. Measurement in neurological rehabilitation. Curr Opin Neurol Neurosurg 1992;5(5):682–6.

24. Wagner J.E., Kernan N.A., Steinbuch M. et al. Allogeneic sibling umbilical-cordblood transplantation in children with malignant and non-malignant disease. Lancet 1995;346(8969):214–9. DOI: 10.1016/s0140-6736(95)91268-1.

25. Broxmeyer H.E., Hangoc G., Cooper S. et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Nat Acad Sci USA 1992;89(9):4109–13. DOI: 10.1073/pnas.89.9.4109.

26. Todaro A.M., Pafumi C., Pernicone G. et al. Haematopoietic progenitors from umbilical cord blood. Blood Purif 2000;18(2):144–7. DOI: 10.1159/000014438.

27. Tse W., Laughlin M.J. Umbilical cord blood transplantation: a new alternative option. Hematology Am Soc Hematol Educ Program 2005:377–83. DOI: 10.1182/asheducation-2005.1.377.

28. Willing A.E., Lixian J., Milliken M. et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 2003;73(3):296–307. DOI: 10.1002/jnr.10659.

29. Galieva L.R., Mukhamedshina Y.O., Akhmetzyanova E.R. et al. Influence of genetically modified human umbilical cord blood mononuclear cells on the expression of Schwann cell molecular determinants in spinal cord injury. Stem Cells Int 2018;2018:4695275. DOI: 10.1155/2018/4695275.

30. Morita T., Sasaki M., Kataoka-Sasaki Y. et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 2016;335:221–31. DOI: 10.1016/j.neuroscience.2016.08.037.

31. Zhao Z.M., Li H.J., Liu H.Y. et al. Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant 2004;13(2):113–22. DOI: 10.3727/000000004773301780.

32. Kim J.W., Kim S.Y., Park S.Y. et al. Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 2004;83(12):733–8. DOI: 10.1007/s00277-004-0918-z.

33. Mikami T., Eguchi M., Kurosawa H. et al. Ultrastructural and cytochemical characterization of human cord blood cells. Med Electr Microsc 2002;35(2):96–101. DOI: 10.1007/s007950200012.

34. Nayar B., Raju G.M., Deka D. Hematopoietic stem/progenitor cell harvesting from umbilical cord blood. Int J Gynaecol Obstet 2002;79(1):31–2. DOI: 10.1016/s0020-7292(02)00187-x.

35. Rogers I., Casper R.F. Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol 2004;18(6):893–908. DOI: 10.1016/j.bpobgyn.2004.06.004.

36. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109(1):235–42. DOI: 10.1046/j.1365-2141.2000.01986.x.

37. Chen N., Hudson J.E., Walczak P. et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells 2005;23(10):1560–70. DOI: 10.1634/stemcells.2004-0284.

38. Frassoni F., Podesta M., Maccario R. et al. Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood 2003;102(3):1138–41. DOI: 10.1182/blood-2003-03-0720.

39. Mukhamedshina Y.O., Shaymardanova G.F., Garanina E.E. et al. Adenoviral vector carrying glial cell-derived neurotrophic factor for direct gene therapy in comparison with human umbilical cord blood cell-mediated therapy of spinal cord injury in rat. Spinal Cord 2016;54(5): 347–59. DOI: 10.1038/sc.2015.161.

40. Zola H., Fusco M., Macardle P.J. et al. Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatr Res 1995;38(3):397–403. DOI: 10.1203/00006450-199509000-00021.

41. Ali H., Jurga M., Kurgonaite K. et al. Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol Exp(Wars) 2009;69(1):12–23.

42. Harris D.T., Schumacher M.J., Locascio J. et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci USA 1992;89(21):10006–10. DOI: 10.1073/pnas.89.21.10006.

43. Korshunova I., Novitskaya V., Kiryushko D. et al. GAP-43 regulates NCAM-180-mediated neurite outgrowth. J Neurochem 2007;100(6):1599–612. DOI: 10.1111/j.1471-4159.2006.04316.x.

44. Lim J.Y., Park S.I., Oh J.H. et al. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res 2008;86(10): 2168–78. DOI: 10.1002/jnr.21669.

45. McGuckin C., Forraz N. Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif 2008;41 Suppl 1:31–40. DOI: 10.1111/j.1365-2184.2008.00490.x.

46. Jang Y.K., Park J.J., Lee M.C. et al. Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 2004;75(4):573–84. DOI: 10.1002/jnr.10789.

47. D’Arena G., Musto P., Cascavilla N. et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 1998;83(3):197–203.

48. Arvanian V.L., Bowers W.J., Anderson A. et al. Combined delivery of neurotrophin-3 and NMDA receptors 2D subunit strengthens synaptic transmission in contused and staggered double hemisected spinal cord of neonatal rat. Exp Neurol 2006;197(2):347–52. DOI: 10.1016/j.expneurol.2005.10.008.

49. Rainsford E., Reen D.J. Interleukin 10, produced in abundance by human newborn T cells, may be the regulator of increased tolerance associated with cord blood stem cell transplantation. Br J Haematol 2002;116(3):702–9. DOI: 10.1046/j.0007-1048.2001.03321.x.

50. Islamov R.R., Sokolov M.E., Bashirov F.V. et al. A pilot study of cell-mediated gene therapy for spinal cord injury in mini pigs. Neurosci Lett 2017;644:67–75. DOI: 10.1016/j.neulet.2017.02.034.

51. Theilgaard-Mӧnch K., Raaschou-Jensen K., Palm H. et al. Flow cytometric assessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stem cells in allogeneic stem cell grafts. Bone Marrow Transplant 2001;28(11):1073–82. DOI: 10.1038/sj.bmt.1703270.

52. Arjmand B., Safavi M., Heidari R. et al. Concomitant transurethral and transvaginal-periurethral injection of autologous adipose derived stem cells for treatment of female stress urinary incontinence: a phase one clinical trial. Acta Med Iran 2017;55(6):368–74.

53. Willing A.E., Eve D.J., Sanberg P.R. Umbilical cord blood transfusions for prevention of progressive brain injury and induction of neural recovery: an immunological perspective. Regen Med 2007;2(4):457–64. DOI: 10.2217/17460751.2.4.457.

54. Thomson B.G., Robertson K.A., Gowan D. et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000;96(8):2703–11.

55. Kuh S.U., Cho Y.E., Yoon D.H. et al. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 2005;147(9):985–92. DOI: 10.1007/s00701-005-0538-y.

56. Chua S.J., Bielecki R., Yamanaka N. et al. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976) 2010;35(16):1520–6. DOI: 10.1097/BRS.0b013e3181c3e963.

57. Kao C.H., Chen S.H., Chio C.C., Lin M.T. Human umbilical cord bloodderived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock 2008;29(1):49–55. DOI: 10.1097/shk.0b013e31805cddce.

58. Dasari V.R., Spomar D.G., Gondi C.S. et al. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 2007;24(2):391–410. DOI: 10.1089/neu.2006.0142.

59. Lim J.H., Byeon Y.E., Ryu H.H. et al. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci 2007;8(3):275–82. DOI: 10.4142/jvs.2007.8.3.275.

60. Mukhamedshina Y.O., Akhmetzyanova E.R., Martynova E.V. et al. Systemic and local cytokine profile following spinal cord injury in rats: a multiplex analysis. Front Neurol 2017;8:581. DOI: 10.3389/fneur.2017.00581.

61. Mukhamedtshina Y.O., Gilazieva Z.E., Arkhipova S.S. et al. Electrophysiological, morphological, and ultrastructural features of the injured spinal cord tissue after transplantation of human umbilical cord blood mononuclear cells genetically modified with the VEGF and GDNF genes. Neural Plast 2017;2017:9857918. DOI: 10.1155/2017/9857918.

62. Ryabov S.I., Smirnov V.A., Green A.A. et al. Human umbilical cord blood cells administration reduces behavioral deficit after severe spinal cord injury. Eur Spine J 2015;24(3):657–8.

63. Ryabov S.I., Zvyagintseva M.A., Osidak E.O., Smirnov V.A. Collagen implant and mononuclear cells of umbilical blood allow the restore of movements of hind limbs after removing the site of spinal cord. Bull Exp Biol Med 2018;164(3):390–3. DOI: 10.1007/s10517-018-3996-y.

64. Liu A.M., Lu G., Tsang K.S. et al. Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery 2010;67(2):357–65. DOI: 10.1227/01.NEU.0000371983.06278.B3.

65. Cheng H., Liu X., Hua R. et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 2014;12:253. DOI: 10.1186/s12967-014-0253-7.

66. Miao X., Wu X., Shi W. Umbilical cord mesenchymal stem cells in neurological disorders: a clinical study. Indian J Biochem Biophys 2015;52(2):140–6.

67. Zhu H., Poon W., Liu Y. et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant 2016;25(11):1925–43. DOI: 10.3727/096368916X691411.

68. Zhao Y., Tang F., Xiao Z. et al. Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 2017;26(5):891–900.


Для цитирования:


Смирнов В.А., Гринь А.А. Регенеративные методы лечения травмы спинного мозга. Обзор литературы. Часть 4. Нейрохирургия. 2020;22(1):83-92. https://doi.org/10.17650/1683-3295-2020-22-1-83-92

For citation:


Smirnov V.A., Grin A.A. Regenerative treatment of spinal cord injury. Literature review. Part 4. Russian journal of neurosurgery. 2020;22(1):83-92. (In Russ.) https://doi.org/10.17650/1683-3295-2020-22-1-83-92

Просмотров: 302


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)