Preview

Russian journal of neurosurgery

Advanced search

Transcutaneous transpedicular osteosynthesis of lumbar spine using mobile operative X-ray unit О-Ат in coincidence with navigation system

Abstract

Introduction. We presented the first experience in Russia of the usage of mobile operational X-ray unit O-Arm combined with navigation station Stealth Station Treon Plus (Medtronic Navigation) during transcutaneous transpedicular osteosynthesis of lumbar spine. Objective - to estimate the possibility for the usage of mobile operational X-ray unit O-Arm combined with navigation station during transcutaneous transpedicular osteosynthesis of lumbar spine and comparison of this method with routine intraoperative roentgenoscopy. Material and methods. We analyzed the surgical treatment outcomes at 168 patients (72 men and 96 women) operated on in spinal neurosurgical department of FFSI «Federal; Neurosurgical Center» (Tyumen, RF) from April 2011 till August 2012. Results. The accurate positioning of transpedicular screws was achieved in 99,4% of patients during usage of X-ray unit O-Arm combined with navigation station (2d group, 114 patients, 530 screws), that was much more better comparing with the usage of routine methods of roentgenoscopy with the help of C-arch (1st group, 54 patients, 258 screws) where the accuracy of positioning was only 86,8%. The mean duration of operation was 195,4±36,5 min and 269,8±41,3 min in 2d and 1st groups respectively (P<0,05). The decreasing of operation duration in 2d group with О-Arm was related to cutting time of screws positioning from 9,2±2,7 min (during usage of C-arch) till 5,3±1,7 min (P<0,05) and decrease of the number of provisional procedures for repeated roentgenoscopic control examinations comparing with the 1st group. Conclusion. The percutaneous transpedicular osteosynthesis with the usage of mobile operational X-ray unit O-Arm combined with navigation station is the safe and effective method of surgical treatment which allows providing the high accuracy of transpedicular screws positioning as well as decreasing the duration of surgical intervention comparing with routine methods of roentgenoscopy.

About the Authors

A. A. Sufianov
ФГБУ «Федеральный центр нейрохирургии» Министерства здравоохранения РФ
Russian Federation


V. I. Manashiuk
ФГБУ «Федеральный центр нейрохирургии» Минздрава России
Russian Federation


D. N. Nabiev
ФГБУ «Федеральный центр нейрохирургии» Минздрава России
Russian Federation


M. K. Zaicev
ФГБУ «Федеральный центр нейрохирургии» Минздрава России
Russian Federation


A. G. Shapkin
ФГБУ «Федеральный центр нейрохирургии» Минздрава России
Russian Federation


R. A. Sufianov
Первый МГМУ им. И.М. Сеченова
Russian Federation


References

1. Бердюгин К.А., Чертков А.К., Штадлер Д.И. и др. Ошибки и осложнения транспедикулярной фиксации позвоночника погружными конструкциями // Фундаментальные исследования. 2012. № 4 (часть 2). С. 425-431.

2. Валеев И.Е. Классификация осложнений транспедикулярных операций позвоночника // Травматология и ортопедия России: научно-практический журнал: актуальные вопросы травматологии и ортопедии, посвящ. 100-летию со дня основания РНИИТО им. Р.Р. Вредена. СПб. 2006. № 2. С. 58.

3. Суфианов А.А., Манащук В.И., Набиев Д.Н. и др. Транспедикулярный остеосинтез с использованием навигационной станции и интраоперационной системы O-arm. Первый опыт // Сибирский международный нейрохирургический форум (18-21.06.2012): Сборник материалов. Новосибирск. 2012. С.109.

4. Раткин И.К., Батрак Ю.М., Светашов А.Н. и др. Задняя фиксация позвоночника при компрессионных переломах грудного и поясничного отделов // Хирургия позвоночника. 2008. № 2. С. 8-13.

5. Усиков В.Д. Руководство по транспедикулярному остеосинтезу позвоночника. СПб. 2006.

6. Cardoso M.J., Rosner M.K. Does the Wilson frame assist with optimizing surgical exposure for minimally invasive lumbar fusions? // Neurosurg. Focus. 2010. №: 28(5). E20.

7. Gaines R.W. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders // J. Bone Joint. Surg. Am. 2000. № 82-A. P. 458-1476.

8. Gelalis I.D., Paschos N.K., Pakos E.E. et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques // Eur. Spine J. 2011. № 21. P. 247-255.

9. Hodez C., Griftaton-Taillandier C., Bensimon I. Cone-beam imaging: applications in ENT // Eur Ann Оtorhinotaryngol Head Neck Dis. 2011. № 128(2). P.65-78.

10. Kandziora F., Schnake K.J., Klostermann C.K. et al. Vertebral body replacement in spine surgery // Unfallchirurg. 2004. № 107. P.354-371.

11. Kim G.W., Lee Y.R., Taylor W. et al. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery // Spine J. 2008. № 8(4). P.584-590.

12. Laine T., Schlenzka D., Makitalo K. et al. Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients // Spine (Phila Pa 1976). 1997. № 22(11). P. 1254-1258.

13. Lau D., Lee J.G., Han S.J. et al. Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF) // J Clin Neurosci. 2011. № 18(5). P. 624-627.

14. Learch T.J., Massie J.B., Pathria M.N., et al. Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: a proposed systematic approach to improve accuracy of interpretation // Spine. 2004. № 29. P.767-773.

15. Lonstein J.E., Denis F., Perra J.H. et al. Complications associated with pedicle screws // J. Bone Joint. Surg. Am. 1999. № 81. P.1519-1528.

16. Merloz P., Tonetti J., Pittel L. et al. Pedicle screw placement using image guided techniques // Clin. Orthop. Relat. Res. 1998. № 354. P.39-48.

17. Nottmeier E.W., Seemer W., Young P.M. Placement of thoracolumbar pedicle screws using three-dimensional image guidance: experience in a large patient cohort // J. Neurosurg. Spine. 2009. № 10. P.33-39.

18. Oertel M.F., Flobart J., Stein M. et al. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative О-arm radiographic imaging // J. Neurosurg. Spine. 2011. № l4(4). P. 532-536.

19. Park Y., Ha J.W., Lee Y.T. et al. Percutaneous placement of pedicle screws in overweight and obese patients // Spine J. 2011. № 11. P.919-24.

20. Rampersaud Y.R., Foley K.T., Shen A.C. et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion // Spine (Phila. Pa. 1976). 2000. № 25(20). P. 2637-2645.

21. Ringel F., StofFel M., Stuer C. et al. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine // Neurosurgery. 2006. № 59(4 suppl. 2): ONS361-ONS366; discussion ONS366- ONS367.

22. Sakai Y., Matsuyama Y., Nakamura H. et al. Segmental pedicle screwing for idiopathic scoliosis using computer-assisted surgery // J. Spinal. Disord. Tech. 2008. № 21. P. 181-186.

23. Theocharopoulos N., Perisinakis K., Damilakis J. et al. Occupational exposure from common fluoroscopic projections used in orthopaedic surgery // J. Bone Joint. Surg. Am. 2003. № 85-A(9). P. 1698-1703.

24. Uksul N., Suero E.M., Stubig T. et al. Mechanical stability analysis of reference clamp fixation in computer-assisted spine surgery // Arch. Orthop. Trauma. Surg. 2011. № 131(7). P. 963-968.

25. Wiesner L., Kothe R., Ruther W. Anatomic evaluation of two different techniques for the percutaneous insertion of pedicle screws in the lumbar spine // Spine. 1999. № 24. P. 1599- 1603.


Review

For citations:


Sufianov A.A., Manashiuk V.I., Nabiev D.N., Zaicev M.K., Shapkin A.G., Sufianov R.A. Transcutaneous transpedicular osteosynthesis of lumbar spine using mobile operative X-ray unit О-Ат in coincidence with navigation system. Russian journal of neurosurgery. 2013;(3):58-64. (In Russ.)

Views: 773


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X