Preview

Russian journal of neurosurgery

Advanced search

On the issue of the accuracy and errors of the framelles neuronavigation (overview)

https://doi.org/10.17650/1683-3295-2020-22-3-110-117

Abstract

The implementation of the navigational systems in the neurosurgical practice has led to the revision of generally accepted surgical approaches to the neurosurgical pathology, allowing to minimize the interoperative impact on brain tissues and to execute the pre-operative planning of the skin incision and the craniotomy, to determine the optimal trajectory of approaching the brain pathology, preserving the radicality of interventions. However, the use of this technology dictates the observation of many technical nuances in the preoperative and intraoperative periods in order to exclude potential errors at the stage of the registration of a patient and at the early stages of the surgery. Despite this, the brain shift caused by a number of physical, surgical and biological factors is the major error source of navigational systems that neurosurgeons face during the operation which can affect further stages of the operation. The present article contains the overview of the scientific research, the authors of which have tried to explain and give a quantitative assessment of the present phenomenon during all the stages of the operation.

About the Authors

V. A. Lukyanchikov
N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department; RUDN University
Russian Federation

3 Bolshaya Sukharevskaya Sq., Moscow 129090, 

6 Miklukho-Maklaya St., Moscow 117198



E. S. Rizhkova
N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department; RUDN University
Russian Federation

3 Bolshaya Sukharevskaya Sq., Moscow 129090, 

6 Miklukho-Maklaya St., Moscow 117198



I. V. Damylin
RUDN University
Russian Federation

6 Miklukho-Maklaya St., Moscow 117198



References

1. Gerard I.J., Kersten-Oertel M., Petrecca K. et al. Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 2017;35:403–20. DOI: 10.1016/j.media.2016.08.007.

2. Wang M.N., Song Z.J. Classification and analysis of the errors in neuronavigation. Neurosurgery 2011;68(4):1131–43. DOI: 10.1227/neu.0b013e318209cc45.

3. Lin F., Jiao Y., Wu J. et al. Effect of functional MRI-guided navigation on surgical outcomes: a prospective controlled trial in patients with arteriovenous malformations. J Neurosurg 2017;126(6):1863–72. DOI: 10.3171/2016.4.jns1616.

4. Signorelli F., Guyotat J., Schneider F. et al. Technical refinements for validating functional MRI-based neuronavigation data by electrical stimulation during cortical language mapping. Minim Invasive Neurosurg 2003;46(5):265–8. DOI: 10.1055/s-2003-44454.

5. Berman J.I., Berger M.S., Mukherjee P., Henry R.G. Diffusion-tensor imagingguided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 2004;101(1):66–72. DOI: 10.3171/jns.2004.101.1.0066.

6. Hill W.A., Martin A.J., Liu H. et al. High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 1998;29(5):253–9. DOI: 10.1097/00006123.

7. Ryan M.J., Erickson R.K., Levin D.N. et al. Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration. J Neurosurg 1998;85(2):287–92. DOI: 10.3171/jns.1996.85.2.0287.

8. Raabe A., Krishnan R., Wolff R. et al. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 2002;50(4): 797–801. DOI: 10.1097/00006123-200204000-00021.

9. Marmulla R., Muhling J., Wirtz C.R., Hassfeld S. High-resolution laser surface scanning for patient registration in cranial computer-assisted surgery. Minim Invasive Neurosurg 2004;47(2):72–8. DOI: 10.1055/s-2004-818471.

10. Stieglitz L.H., Fichtner J., Andres R. et al. The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 2013;72(5):796–807. DOI: 10.1227/neu.0b013e318287072d.

11. Woerdeman P.A., Willems P.W., Noordmans H.J. et al. Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg 2007;106(6):1012–6. DOI: 10.3171/jns.2007.106.6.1012.

12. Thompson E.M., Anderson G.J., Roberts C.M. et al. Skull-fixated fiducial markers improve accuracy in staged frameless stereotactic epilepsy surgery in children. J Neurosurg Pediatr 2011;7(1):116–9. DOI: 10.3171/2010.10.peds10352.

13. Mascott C.R., Sol J.C., Bousquet P. et al. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery 2006;59(1 Suppl 1): ONS146–56. DOI: 10.1227/01.neu.0000220089.39533.4e.

14. Paraskevopoulos D., Unterberg A., Metzner R. et al. Comparative study of application accuracy of two frameless neuronavigation systems: experimental error assessment quantifying registration methods and clinically influencing factors. Neurosurg Rev 2010;34(2):217–28. DOI: 10.1007/s10143-010-0302-5.

15. Watanabe E., Mayanagi Y., Kosugi Y. et al. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 1991;28(6):792–9. DOI: 10.1097/00006123-199106000-00002.

16. Laborde G., Gilsbach J., Harders A. et al. Computer assisted localizer for planning of surgery and intra-operative orientation. Acta Neurochir (Wien) 1992;119(1–4): 166–70. DOI: 10.1007/bf01541803.

17. Golfinos J.G., Fitzpatrick B.C., Smith L.R., Spetzler R.F. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 1995;83(2):197–205. DOI: 10.3171/jns.1995.83.2.0197.

18. Sipos E.P., Tebo S.A., Zinreich S.J. et al. In vivo accuracy testing and clinical experience with the ISG Viewing Wand. Neurosurgery 1996;39(1):194–202. DOI: 10.1097/00006123-199607000-00048.

19. Hassfeld S., Muehling J., Wirtz C.R. et al. Intraoperative guidance in maxillofacial and craniofacial surgery. Proc Inst Mech Eng H 1997;211(4):277–83. DOI: 10.1243/0954411971534395.

20. Helm P.A., Eckel T.S. Accuracy of registration methods in frameless stereotaxis. Comput Aided Surg 1998;3(2):51–6. DOI: 10.1002/(sici)1097-0150(1998)3:23.0.co;2-j.

21. Brinker T., Arango G., Kaminsky J. et al. An experimental approach to image guided skull base surgery employing a microscope-based neuronavigation system. Acta Neurochir (Wien) 1998;140(9):883–9. DOI: 10.1007/s007010050189.

22. Germano I.M., Villalobos H., Silvers A., Post K.D. Clinical use of the optical digitizer for intracranial neuronavigation. Neurosurgery 1999;45(2):261–9. DOI: 10.1097/00006123-199908000-00013.

23. Villalobos H., Germano I.M. Clinical evaluation of multimodality registration in frameless stereotaxy. Comput Aided Surg 1999;4:45–9. DOI: 10.1002/(sici)1097-0150(1999)4:13.0.co;2-p.

24. Gumprecht H.K., Widenka D.C., Lumenta C.B. BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases. Neurosurgery 1999;44(1):97–104. DOI: 10.1097/00006123-199901000-00057.

25. Wolfsberger S., Rossler K., Regatschnig R., Ungersbock K. Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev 2002;25(1–2):68–72. DOI: 10.1007/s10143-001-0201-x.

26. Pillai P., Sammet S., Ammirati M. Application accuracy of computed tomography-based, image-guided navigation of temporal bone. Neurosurgery 2008;63(4 Suppl 2):326–32. DOI: 10.1227/01.neu.0000316429.19314.67.

27. Pfisterer W.K., Papadopoulos S., Drumm D.A. et al. Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery 2008;62(3 Suppl 1):201–7. DOI: 10.1227/01.neu.0000317394.14303.99.

28. Mercier L., Del Maestro R.F., Petrecca K. et al. New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 2011;6(4):507–22. DOI: 10.1007/s11548-010-0535-3.

29. Kall B.A., Goerss S.J., Stiving S.O. et al. Quantitative analysis of a noninvasive stereotactic image registration technique. Stereotact Funct Neurosurg 1996;66(1–3): 69–74. DOI: 10.1159/000099670.

30. Smith K.R., Frank K.J., Bucholz R.D. The NeuroStation – a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graph 1994;18(4):247–56. DOI: 10.1016/0895-6111(94)90049-3.

31. Maurer C.R. Jr, Fitzpatrick J.M., Wang M.Y. et al. Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 1997;16(4):447–62. DOI: 10.1109/42.611354.

32. Gerard I.J., Collins D.L. An analysis of tracking error in image-guided neurosurgery. Int J Comput Assist Radiol Surg 2015;10(10):1579–88. DOI: 10.1007/s11548-014-1145-2.

33. Gerard I.J., Hall J.A., Mok K., Collins D.L. New protocol for skin landmark registration in image guided neurosurgery: technical note. Neurosurgery 2015;11 Suppl 3:376–81. DOI: 10.1227/neu.0000000000000868.

34. Shabunin A.V., Gorozhanin A.V., Vakatov D.V. Possibility of frameless biopsy of deep and remote brain tumors and impact of its results on treatment strategy. Saratovsky nauchno-meditsinsky zhurnal = Saratov Journal of Medical Scientific Research 2019;15(2):312–7. (In Russ.).

35. Cao A., Thompson R.C., Dumpuri P.A. et al. Laser range scanning for imageguided neurosurgery: investigation of image-to-physical space registrations. Med Phys 2008;35(4):1593–605. DOI: 10.1118/1.2870216.

36. Nakajima S., Atsumi A.H., Kikinis R. et al. Use of cortical surface vessel registration for image-guided neurosurgery. Neurosurgery 1997;40(6):1201–10. DOI: 10.1097/0006123-199706000-00018.

37. Steinmeier R., Rachinger J., Kaus M. et al. Factors influencing the application accuracy of neuronavigation systems. Stereotact Funct Neurosurg 2000;75(4): 188–202. DOI: 10.1159/000048404.

38. Gorozhanin A.V., Shestakov A.A., Vakatov D.V. et al. The choice of methods and standards for radio examination when using navigation systems in neurosurgery. Diagnosticheskaya i interventsionnaya radiologiya = Diagnostic and Interventional Radiology 2011;5(1):39–48. (In Russ.).

39. Galloway R.L., Maciunas R.J., Latimer J.W. The accuracies of four stereotactic frame systems: an independent assessment. Biomed Instrum Technol 1991;25(6):457–60.

40. Maciunas R.J., Galloway R.L., Latimer J.W. The application accuracy of stereotactic frames. Neurosurgery 1994;35(4):682–94. DOI: 10.1227/00006123-199410000-00015.

41. Galloway R.L., Maciunas R.J. Stereotactic neurosurgery. Crit Rev Biomed Eng 1990;18(3):181–205. DOI: 10.1097/00006123-199410000-00015.

42. Jezzard P., Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999;8(2–3):80–5. DOI: 10.1002/(sici)1097-0193(1999)8:2/33.0.co;2-c.

43. Hutton C., Bork A., Josephs O. et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002;16(1):217–40. DOI: 10.1006/nimg.2001.1054.

44. Alexander A.L., Hasan K.M., Lazar M. et al. Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 2001;45(5):770–80. DOI: 10.1002/mrm.1105.

45. Papanikolaou N., Karampekios S., Papadaki E. et al. Fractional anisotropy and mean diffusivity measurements on normal human brain: comparison between low- and high-resolution diffusion tensor imaging sequences. Eur Radiol 2006;16(1): 187–92. DOI: 10.1007/s00330-005-2833-7.

46. Salmenpera T.M., Simister R.J., Bartlett P. et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 2006;71(2–3):102–6. DOI: 10.1016/j.eplepsyres.2006.05.020.

47. Schicho K., Figl M., Seemann R. Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. J Neurosurg 2007;106(4):704–9. DOI: 10.3171/jns.2007.106.4.704.

48. Kurtsoy A., Menku A., Tucer B. Neuronavigation in skull base tumors. Minim Invasive Neurosurg 2005;48(1):7–12. DOI: 10.1055/s-2004-830151.

49. Semin P.A., Krivoshapkin A.L., Melidi E.G., Kanygin V.V. Frameless neuronavigation and its application in the course of surgery of cerebral mass lesions. Neyrokhirurgiya = Russian Journal of Neurosurgery 2004;(2):20–4. (In Russ.).

50. Mongen M.A., Willems P.W.A. Current accuracy of surface matching compared to adhesive markers in patient-to-image registration. Acta Neurochir (Wien) 2019;161(5):865–70. DOI: 10.1007/s00701-019-03867-8.

51. Batista P.D., Machado I.P., Roios P. et al. Position and orientation errors in a neuronavigation procedure: a stepwise protocol using a cranial phantom. World Neurosurg 2019;126:e342–50. DOI: 10.1016/j.wneu.2019.02.052.

52. Kelly P.J., Kall B.A., Goerss S., Earnest F. 4th. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg 1986;64(3):427–39. DOI: 10.3171/jns.1986.64.3.0427.

53. Nauta H.J. Error assessment during “image guided” and “imaging interactive” stereotactic surgery. Comput Med Imag Graph 1994;18(4):279–87. DOI: 10.1016/0895-6111(94)90052-3.

54. Hill D.L., Maurer C.R., Maciunas R.J. Measurement of intraoperative brain surface. Neurosurgery 1998;43(3):514–26. DOI: 10.1097/00006123-199809000-00071.

55. Roberts D.W., Hartov A., Kennedy F.E. et al. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998;43(4):749–60. DOI: 10.1097/00006123-199810000-00013.

56. Dorward N.L., Alberti O., Velani B. et al. Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 1998;88(4):656–62. DOI: 10.1097/00006123-199809000-00315.

57. Nimsky C., Ganslandt O., Hastreiter P., Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol 2001;56(6):357–64. DOI: 10.1016/s0090-3019(01)00628-0.

58. Hastreiter P., Rezk-Salama C., Soza G. et al. Strategies for brain shift evaluation. Med Image Anal 2004;8(4):447–64. DOI: 10.1016/j.media.2004.02.001.

59. Reinges M.H., Nguyen H.H., Krings T. et al. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 2004;146:369–77. DOI: 10.1007/s00701-003-0204-1.

60. Nabavi A., Black P.M., Gering D.T. et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001;48(4):787–97. DOI: 10.1097/0006123-200104000-00019.

61. Miga M.I., Paulsen K.D., Lemery J.M. et al. Model-updated image guidance: initial clinical experiences with gravityinduced brain deformation. IEEE Trans Med Imaging 1999;18(10)866–74. DOI: 10.1109/42.811265.

62. Nimsky C., Ganslandt O., Cerny S. et al. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47(5):1070–80. DOI: 10.1097/00006123-200011000-00008.

63. Duffau H., Capelle L., Sichez J.-P. et al. Intra-operative direct electrical stimulations of the central nervous system: the Salpêtrière experience with 60 patients. Acta Neurochir (Wien) 1999;141(11):1157–67. DOI: 10.1007/s007010050413.

64. Ganslandt O., Behari S., Gralla J. et al. Neuronavigation: concept, techniques and applications. Neurol India 2002;50(3):244–55. DOI: 10.1097/0006123-200105000-00023.

65. Elias W.J., Fu K.M., Frysinger R.C. Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 2007;107(5):983–8. DOI: 10.3171/jns.2007.107.5.983.

66. Shenkin H.A., Goluboff B., Haft H. The use of mannitol for the reduction of intracranial pressure in intracranial surgery. J. Neurosurg 1962;19:897–901. DOI: 10.3171/jns.1962.19.10.0897.


Review

For citations:


Lukyanchikov V.A., Rizhkova E.S., Damylin I.V. On the issue of the accuracy and errors of the framelles neuronavigation (overview). Russian journal of neurosurgery. 2020;22(3):110-117. (In Russ.) https://doi.org/10.17650/1683-3295-2020-22-3-110-117

Views: 10038


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X