К вопросу о точности и ошибках безрамной нейронавигации (обзор литературы)
https://doi.org/10.17650/1683-3295-2020-22-3-110-117
Аннотация
Внедрение в нейрохирургическую практику навигационных систем позволило пересмотреть общепринятые подходы к лечению заболеваний головного мозга: стало возможным минимальное интраоперационное воздействие на ткани головного мозга, предоперационное планирование кожного разреза, краниотомии и выбор оптимальной траектории подхода к патологии с сохранением радикальности вмешательства. Однако использование навигационных систем в предоперационном и интраоперационном периодах требует знания множества технических нюансов для предотвращения ошибок на этапе регистрации и на ранних этапах операции. Несмотря на это, смещение мозга, вызываемое рядом физических, хирургических и биологических факторов, является главным источником ошибок навигационных систем, с которыми сталкиваются нейрохирурги в ходе операции и которые могут повлиять на дальнейшие этапы операции. Данная статья представляет собой обзор научных работ, авторы которых пытались объяснить, а также количественно оценить данное явление на протяжении всех этапов операции.
Об авторах
В. А. ЛукьянчиковРоссия
129090 Москва, Большая Сухаревская пл., 3,
117198 Москва, ул. Миклухо-Маклая, 6
Е. С. Рыжкова
Россия
Елена Станиславовна Рыжкова
129090 Москва, Большая Сухаревская пл., 3;
117198 Москва, ул. Миклухо-Маклая, 6
И. В. Дамулин
Россия
117198 Москва, ул. Миклухо-Маклая, 6
Список литературы
1. Gerard I.J., Kersten-Oertel M., Petrecca K. et al. Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 2017;35:403–20. DOI: 10.1016/j.media.2016.08.007.
2. Wang M.N., Song Z.J. Classification and analysis of the errors in neuronavigation. Neurosurgery 2011;68(4):1131–43. DOI: 10.1227/neu.0b013e318209cc45.
3. Lin F., Jiao Y., Wu J. et al. Effect of functional MRI-guided navigation on surgical outcomes: a prospective controlled trial in patients with arteriovenous malformations. J Neurosurg 2017;126(6):1863–72. DOI: 10.3171/2016.4.jns1616.
4. Signorelli F., Guyotat J., Schneider F. et al. Technical refinements for validating functional MRI-based neuronavigation data by electrical stimulation during cortical language mapping. Minim Invasive Neurosurg 2003;46(5):265–8. DOI: 10.1055/s-2003-44454.
5. Berman J.I., Berger M.S., Mukherjee P., Henry R.G. Diffusion-tensor imagingguided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 2004;101(1):66–72. DOI: 10.3171/jns.2004.101.1.0066.
6. Hill W.A., Martin A.J., Liu H. et al. High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 1998;29(5):253–9. DOI: 10.1097/00006123.
7. Ryan M.J., Erickson R.K., Levin D.N. et al. Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration. J Neurosurg 1998;85(2):287–92. DOI: 10.3171/jns.1996.85.2.0287.
8. Raabe A., Krishnan R., Wolff R. et al. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 2002;50(4): 797–801. DOI: 10.1097/00006123-200204000-00021.
9. Marmulla R., Muhling J., Wirtz C.R., Hassfeld S. High-resolution laser surface scanning for patient registration in cranial computer-assisted surgery. Minim Invasive Neurosurg 2004;47(2):72–8. DOI: 10.1055/s-2004-818471.
10. Stieglitz L.H., Fichtner J., Andres R. et al. The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 2013;72(5):796–807. DOI: 10.1227/neu.0b013e318287072d.
11. Woerdeman P.A., Willems P.W., Noordmans H.J. et al. Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg 2007;106(6):1012–6. DOI: 10.3171/jns.2007.106.6.1012.
12. Thompson E.M., Anderson G.J., Roberts C.M. et al. Skull-fixated fiducial markers improve accuracy in staged frameless stereotactic epilepsy surgery in children. J Neurosurg Pediatr 2011;7(1):116–9. DOI: 10.3171/2010.10.peds10352.
13. Mascott C.R., Sol J.C., Bousquet P. et al. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery 2006;59(1 Suppl 1): ONS146–56. DOI: 10.1227/01.neu.0000220089.39533.4e.
14. Paraskevopoulos D., Unterberg A., Metzner R. et al. Comparative study of application accuracy of two frameless neuronavigation systems: experimental error assessment quantifying registration methods and clinically influencing factors. Neurosurg Rev 2010;34(2):217–28. DOI: 10.1007/s10143-010-0302-5.
15. Watanabe E., Mayanagi Y., Kosugi Y. et al. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 1991;28(6):792–9. DOI: 10.1097/00006123-199106000-00002.
16. Laborde G., Gilsbach J., Harders A. et al. Computer assisted localizer for planning of surgery and intra-operative orientation. Acta Neurochir (Wien) 1992;119(1–4): 166–70. DOI: 10.1007/bf01541803.
17. Golfinos J.G., Fitzpatrick B.C., Smith L.R., Spetzler R.F. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 1995;83(2):197–205. DOI: 10.3171/jns.1995.83.2.0197.
18. Sipos E.P., Tebo S.A., Zinreich S.J. et al. In vivo accuracy testing and clinical experience with the ISG Viewing Wand. Neurosurgery 1996;39(1):194–202. DOI: 10.1097/00006123-199607000-00048.
19. Hassfeld S., Muehling J., Wirtz C.R. et al. Intraoperative guidance in maxillofacial and craniofacial surgery. Proc Inst Mech Eng H 1997;211(4):277–83. DOI: 10.1243/0954411971534395.
20. Helm P.A., Eckel T.S. Accuracy of registration methods in frameless stereotaxis. Comput Aided Surg 1998;3(2):51–6. DOI: 10.1002/(sici)1097-0150(1998)3:23.0.co;2-j.
21. Brinker T., Arango G., Kaminsky J. et al. An experimental approach to image guided skull base surgery employing a microscope-based neuronavigation system. Acta Neurochir (Wien) 1998;140(9):883–9. DOI: 10.1007/s007010050189.
22. Germano I.M., Villalobos H., Silvers A., Post K.D. Clinical use of the optical digitizer for intracranial neuronavigation. Neurosurgery 1999;45(2):261–9. DOI: 10.1097/00006123-199908000-00013.
23. Villalobos H., Germano I.M. Clinical evaluation of multimodality registration in frameless stereotaxy. Comput Aided Surg 1999;4:45–9. DOI: 10.1002/(sici)1097-0150(1999)4:13.0.co;2-p.
24. Gumprecht H.K., Widenka D.C., Lumenta C.B. BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases. Neurosurgery 1999;44(1):97–104. DOI: 10.1097/00006123-199901000-00057.
25. Wolfsberger S., Rossler K., Regatschnig R., Ungersbock K. Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev 2002;25(1–2):68–72. DOI: 10.1007/s10143-001-0201-x.
26. Pillai P., Sammet S., Ammirati M. Application accuracy of computed tomography-based, image-guided navigation of temporal bone. Neurosurgery 2008;63(4 Suppl 2):326–32. DOI: 10.1227/01.neu.0000316429.19314.67.
27. Pfisterer W.K., Papadopoulos S., Drumm D.A. et al. Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery 2008;62(3 Suppl 1):201–7. DOI: 10.1227/01.neu.0000317394.14303.99.
28. Mercier L., Del Maestro R.F., Petrecca K. et al. New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 2011;6(4):507–22. DOI: 10.1007/s11548-010-0535-3.
29. Kall B.A., Goerss S.J., Stiving S.O. et al. Quantitative analysis of a noninvasive stereotactic image registration technique. Stereotact Funct Neurosurg 1996;66(1–3): 69–74. DOI: 10.1159/000099670.
30. Smith K.R., Frank K.J., Bucholz R.D. The NeuroStation – a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graph 1994;18(4):247–56. DOI: 10.1016/0895-6111(94)90049-3.
31. Maurer C.R. Jr, Fitzpatrick J.M., Wang M.Y. et al. Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 1997;16(4):447–62. DOI: 10.1109/42.611354.
32. Gerard I.J., Collins D.L. An analysis of tracking error in image-guided neurosurgery. Int J Comput Assist Radiol Surg 2015;10(10):1579–88. DOI: 10.1007/s11548-014-1145-2.
33. Gerard I.J., Hall J.A., Mok K., Collins D.L. New protocol for skin landmark registration in image guided neurosurgery: technical note. Neurosurgery 2015;11 Suppl 3:376–81. DOI: 10.1227/neu.0000000000000868.
34. Шабунин А.В., Горожанин А.В., Вакатов Д.В. и др. Возможности безрамной биопсии опухолей головного мозга глубинной и труднодоступной локализации и влияние ее результатов на стратегию лечения. Саратовский научномедицинский журнал 2019;15(2):312–7.
35. Cao A., Thompson R.C., Dumpuri P.A. et al. Laser range scanning for imageguided neurosurgery: investigation of image-to-physical space registrations. Med Phys 2008;35(4):1593–605. DOI: 10.1118/1.2870216.
36. Nakajima S., Atsumi A.H., Kikinis R. et al. Use of cortical surface vessel registration for image-guided neurosurgery. Neurosurgery 1997;40(6):1201–10. DOI: 10.1097/0006123-199706000-00018.
37. Steinmeier R., Rachinger J., Kaus M. et al. Factors influencing the application accuracy of neuronavigation systems. Stereotact Funct Neurosurg 2000;75(4): 188–202. DOI: 10.1159/000048404.
38. Горожанин А.В., Шестаков А.А., Вакатов Д.В. и др. Выбор методов и стандарты проведения лучевого исследования при применении навигационных систем в нейрохирургии. Диагностическая и интервенционная радиология 2011;5(1):39–48.
39. Galloway R.L., Maciunas R.J., Latimer J.W. The accuracies of four stereotactic frame systems: an independent assessment. Biomed Instrum Technol 1991;25(6):457–60.
40. Maciunas R.J., Galloway R.L., Latimer J.W. The application accuracy of stereotactic frames. Neurosurgery 1994;35(4):682–94. DOI: 10.1227/00006123-199410000-00015.
41. Galloway R.L., Maciunas R.J. Stereotactic neurosurgery. Crit Rev Biomed Eng 1990;18(3):181–205. DOI: 10.1097/00006123-199410000-00015.
42. Jezzard P., Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999;8(2–3):80–5. DOI: 10.1002/(sici)1097-0193(1999)8:2/33.0.co;2-c.
43. Hutton C., Bork A., Josephs O. et al. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002;16(1):217–40. DOI: 10.1006/nimg.2001.1054.
44. Alexander A.L., Hasan K.M., Lazar M. et al. Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 2001;45(5):770–80. DOI: 10.1002/mrm.1105.
45. Papanikolaou N., Karampekios S., Papadaki E. et al. Fractional anisotropy and mean diffusivity measurements on normal human brain: comparison between low- and high-resolution diffusion tensor imaging sequences. Eur Radiol 2006;16(1): 187–92. DOI: 10.1007/s00330-005-2833-7.
46. Salmenpera T.M., Simister R.J., Bartlett P. et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 2006;71(2–3):102–6. DOI: 10.1016/j.eplepsyres.2006.05.020.
47. Schicho K., Figl M., Seemann R. Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. J Neurosurg 2007;106(4):704–9. DOI: 10.3171/jns.2007.106.4.704.
48. Kurtsoy A., Menku A., Tucer B. Neuronavigation in skull base tumors. Minim Invasive Neurosurg 2005;48(1):7–12. DOI: 10.1055/s-2004-830151.
49. Семин П.А., Кривошапкин А.Л., Мелиди Е.Г., Каныгин В.В. Безрамочная нейронавигация в хирургии объемных образований головного мозга. Нейрохирургия 2004;(2):20–4.
50. Mongen M.A., Willems P.W.A. Current accuracy of surface matching compared to adhesive markers in patient-to-image registration. Acta Neurochir (Wien) 2019;161(5):865–70. DOI: 10.1007/s00701-019-03867-8.
51. Batista P.D., Machado I.P., Roios P. et al. Position and orientation errors in a neuronavigation procedure: a stepwise protocol using a cranial phantom. World Neurosurg 2019;126:e342–50. DOI: 10.1016/j.wneu.2019.02.052.
52. Kelly P.J., Kall B.A., Goerss S., Earnest F. 4th. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg 1986;64(3):427–39. DOI: 10.3171/jns.1986.64.3.0427.
53. Nauta H.J. Error assessment during “image guided” and “imaging interactive” stereotactic surgery. Comput Med Imag Graph 1994;18(4):279–87. DOI: 10.1016/0895-6111(94)90052-3.
54. Hill D.L., Maurer C.R., Maciunas R.J. Measurement of intraoperative brain surface. Neurosurgery 1998;43(3):514–26. DOI: 10.1097/00006123-199809000-00071.
55. Roberts D.W., Hartov A., Kennedy F.E. et al. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998;43(4):749–60. DOI: 10.1097/00006123-199810000-00013.
56. Dorward N.L., Alberti O., Velani B. et al. Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 1998;88(4):656–62. DOI: 10.1097/00006123-199809000-00315.
57. Nimsky C., Ganslandt O., Hastreiter P., Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol 2001;56(6):357–64. DOI: 10.1016/s0090-3019(01)00628-0.
58. Hastreiter P., Rezk-Salama C., Soza G. et al. Strategies for brain shift evaluation. Med Image Anal 2004;8(4):447–64. DOI: 10.1016/j.media.2004.02.001.
59. Reinges M.H., Nguyen H.H., Krings T. et al. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 2004;146:369–77. DOI: 10.1007/s00701-003-0204-1.
60. Nabavi A., Black P.M., Gering D.T. et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001;48(4):787–97. DOI: 10.1097/0006123-200104000-00019.
61. Miga M.I., Paulsen K.D., Lemery J.M. et al. Model-updated image guidance: initial clinical experiences with gravityinduced brain deformation. IEEE Trans Med Imaging 1999;18(10)866–74. DOI: 10.1109/42.811265.
62. Nimsky C., Ganslandt O., Cerny S. et al. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47(5):1070–80. DOI: 10.1097/00006123-200011000-00008.
63. Duffau H., Capelle L., Sichez J.-P. et al. Intra-operative direct electrical stimulations of the central nervous system: the Salpêtrière experience with 60 patients. Acta Neurochir (Wien) 1999;141(11):1157–67. DOI: 10.1007/s007010050413.
64. Ganslandt O., Behari S., Gralla J. et al. Neuronavigation: concept, techniques and applications. Neurol India 2002;50(3):244–55. DOI: 10.1097/0006123-200105000-00023.
65. Elias W.J., Fu K.M., Frysinger R.C. Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 2007;107(5):983–8. DOI: 10.3171/jns.2007.107.5.983.
66. Shenkin H.A., Goluboff B., Haft H. The use of mannitol for the reduction of intracranial pressure in intracranial surgery. J. Neurosurg 1962;19:897–901. DOI: 10.3171/jns.1962.19.10.0897.
Рецензия
Для цитирования:
Лукьянчиков В.А., Рыжкова Е.С., Дамулин И.В. К вопросу о точности и ошибках безрамной нейронавигации (обзор литературы). Нейрохирургия. 2020;22(3):110-117. https://doi.org/10.17650/1683-3295-2020-22-3-110-117
For citation:
Lukyanchikov V.A., Rizhkova E.S., Damylin I.V. On the issue of the accuracy and errors of the framelles neuronavigation (overview). Russian journal of neurosurgery. 2020;22(3):110-117. (In Russ.) https://doi.org/10.17650/1683-3295-2020-22-3-110-117