Preview

Russian journal of neurosurgery

Advanced search

Outcomes of neurosurgical treatment of patients with non-visualized adenoma and microadenoma of the pituitary gland and with Cushing’s disease

https://doi.org/10.17650/1683-3295-2020-22-1-39-48

Abstract

The study objective is to compare pre- and intraoperative characteristics, and the results of neurosurgical treatment in patients with Cushing’s disease, non-visualized adenoma and microadenoma of the pituitary gland.

Materials and methods. The results of transsphenoidal adenomectomy were analyzed in 102 patients with non-visualized corticotropinomas and 360 patients with microcorticotropinomas. The pituitary genesis of endogenous ACTH-dependent hypercorticism in 182 patients was proved by the results of selective blood sampling from inferior petrosal sinus with stimulation desmopressin. The study included 369 women and 93 men aged 16 to 64 years. All patients were operated by transnasal approach using endoscopic techniques.

Results. The group with non-visualized adenoma was dominated by men (p = 0.005) and patients with severe hypercorticism (p = 0.021). When comparing intraoperative characteristics in this group, invasive growth was statistically significantly more frequent (53 % vs 39 %) (p = 0.017), which in turn led to more aggressive intraoperative tactics (p <0.001) and more frequent development of hypothyroidism (11 % vs 4 %) (p = 0.028) in the early postoperative period. Early postoperative remission occurred in 73 (72 %) of 102 patients with non-visualized adenoma and in 314 (87 %) of 360 patients with microadenoma (p <0.001).

Conclusion. Early results of primary transsphenoidal adenomectomy in patients with non-visualized pituitary adenoma were significantly worse in comparison with patients with microadenoma detected by 1.5 T magnetic resonance imaging, which have more frequently invasive growth, what leads to an increase in the volume of surgery and a possible increase in postoperative hypopituitarism.

About the Authors

O. V. Ivashchenko
National Medical Research Center of Endocrinology, Ministry of Health of Russia
Russian Federation
11 Dmitriya Ulyanova St., Moscow 117036


A. Yu. Grigoriev
National Medical Research Center of Endocrinology, Ministry of Health of Russia
Russian Federation
11 Dmitriya Ulyanova St., Moscow 117036


V. N. Azizyan
National Medical Research Center of Endocrinology, Ministry of Health of Russia
Russian Federation
11 Dmitriya Ulyanova St., Moscow 117036


E. Yu. Nadezhdina
National Medical Research Center of Endocrinology, Ministry of Health of Russia
Russian Federation
11 Dmitriya Ulyanova St., Moscow 117036


O. Yu. Rebrova
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; National Research University “Higher School of Economics”
Russian Federation

1 Ostrovitianovа St., Moscow 117997; 20 Myasnitskaya St., Moscow 101000



A. M. Lapshina
National Medical Research Center of Endocrinology, Ministry of Health of Russia
Russian Federation
11 Dmitriya Ulyanova St., Moscow 117036


G. S. Kolesnikova
National Medical Research Center of Endocrinology, Ministry of Health of Russia
Russian Federation
11 Dmitriya Ulyanova St., Moscow 117036


References

1. Biller B.M., Grossman A.B., Stewart P.M. et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2008;93(7):2454–6. DOI: 10.1210/jc.2007-2734.

2. Ludecke D.K., Flitsch J., Knappe U.J., Saeger W. Cushing’s disease: a surgical view. J Neurooncol 2001;54(2):151–66.

3. Nieman L.K., Biller B.M., Findling J.W. et al. Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015;100(8):2807–31. DOI: 10.1210/jc.2015-1818.

4. Sun Y., Sun Q., Fan C. et al. Diagnosis and therapy for Cushing’s disease with negative dynamic MRI finding: a single-centre experience. Clin Endocrinol (Oxf) 2012;76(6):868–76. DOI: 10.1111/j.1365-2265.2011.04279.x.

5. Yamada S., Fukuhara N., Nishioka H. et al. Surgical management and outcomes in patients with Cushing disease with negative pituitary magnetic resonance imaging. World Neurosurg 2012;77(3–4):525–32. DOI: 10.1016/j.wneu.2011.06.033.

6. Castinetti F., Morange I., Conte-Devolx B., Brue T. Cushing’s disease Review. Orphanet J Rare Dis 2012;18:7–41. DOI: 10.1186/1750-1172-7-41.

7. Vitale G., Tortora F., Baldelli R. et al. Pituitary magnetic resonance imaging in Cushing’s disease. Endocrine 2017;55(3):691–69. DOI: 10.1007/s12020-016-1038-y.

8. Grober Y., Grober H., Wintermark M. et al. Comparison of MRI techniques for detecting microadenomas in Cushing’s disease. J Neurosurg 2018;128(4):961–1272. DOI: 10.3171/2017.3.JNS163122.

9. Erickson D., Erickson B., Watson R. et al. 3 Tesla magnetic resonance imaging with and without corticotropin releasing hormone stimulation for the detection of microadenomas in Cushing’s syndrome. Clin Endocrinol (Oxf) 2010;72(6):793–9. DOI: 10.1111/j.1365-2265.2009.03723.х.

10. Fukuhara N., Inoshita N., Yamaguchi-Okada M. et al. Outcomes of three-Tesla magnetic resonance imaging for the identification of pituitary adenoma in patients with Cushing’s disease. Endocr J 2019;28;66(3):259–64. DOI: 10.1507/endocrj.EJ18-0458.

11. Portocarrero-Ortiz L., Bonifacio-Delgadillo D., Sotomayor-Gonzalez A. et al. A modified protocol using half-dose gadolinium in dynamic 3-Tesla magnetic resonance imaging for detection of ACTH-secreting pituitary tumors. Pituitary 2010;13(3):230–5. DOI: 10.1007/s11102-010-0222-y.

12. Arnaldi G., Arvat E., Atkinson A.B. et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003;88(12):5593–602. DOI: 10.1210/jc.2003-030871.

13. Giraldi F.P., Cavallo M., Tortora F. et al. The role of inferior petrosal sinus sampling in ACTH-dependent Cushing’s syndrome: review and joint opinion statement by mem bers of the Italian Society for Endocrinology, Italian Society for Neurosurgery, and Italian Society for Neuroradiology. Neurosurg Focus 2015;38(2):E5. DOI: 10.3171/2014.11.FOCUS14766.

14. Rollin G., Ferreira N.P., Czepie lew ski M.A. Prospective evaluation of transsphenoidal pituitary surgery in 108 patients with Cushing’s disease. Arq Bras Endocrinol Metabol 2007;51(8):1355–61.

15. Prevedello D.M., Pouratian N., Sherman J. et al. Management of Cushing’s disease: outcome in patients with microadenoma detected on pituitary magnetic resonance imaging. J Neurosurg 2008;109(4):751–759. DOI: 10.3171/JNS/2008/109/10/0751.

16. Bochicchio D., Losa M., Buchfelder M. Factors influencing the immediate and late outcome оf Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group. J Clin Endocrinol Metab 1995;80:3114–20.

17. Salenave S., Gatta B., Pecheur S. et al. Pituitary magnetic resonance imaging findings do not influence surgical outcome in adrenocorticotropin-secreting microadenomas. J Clin Endocrinol Metab 2004;89(7):3371–6. DOI: 10.1210/jc.2003-031908.

18. Ciric I., Zhao J.C., Du H. et al. Transsphenoidal surgery for Cushing disease: experience with 136 patients. Neurosurgery 2012;70(1):70–81. DOI: 10.1227/NEU.0b013e31822dda2c.

19. Kelly D.F. Transsphenoidal surgery for Cushing’s disease: a review of success rates, remission predictors, management of failed surgery, and Nelson’s syndrome. Neurosurg Focus 2007;23(3):E5. DOI: 10.3171./foc.2007.23.3.7.

20. Rees D.A., Hanna F.W., Davies J.S. et al. Longterm follow-up results of transsphenoidal surgery for Cushing’s disease in a single centre using strict criteria for remission. Clin Endocrinol (Oxf) 2002;56(4):541–51. DOI: 10.1046/j.1365-2265.2002.01511.x.

21. Jagannathan J., Smith R., De Vroom H.L. et al. Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J Neurosurg 2009;111(3):531–9. DOI: 10.3171/2008.8.JNS08339.

22. Itsenko–Cushing’s disease. Ed. by I.I. Dedov, G.A. Melnichenko. Moscow, 2011. 342 p. (In Russ.).

23. Oldfield E.H., Doppman J.L., Nieman L.K. et al: Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N Engl J Med 1991;325:897–905.

24. Belaia Z.E., Rozhinskaia L.Y., Melnichenko G.A. et al. The role of prolactin gradient and normalized ACTH/prolactin ratio in the improvement of sensitivity and specificity of selective blood sampling from inferior petrosal sinuses for differential diagnostics of ACTH-dependent hypercorticism. Problemy endokrinologii = Problems of Endocrinology 2013;59(4):3–10. (In Russ.). DOI: 10.14341/probl20135943-10.

25. Chatain G.P., Patronas N., Smirniotopoulos J.G. et al. Potential utility of FLAIR in MRI-negative Cushing’s disease. J Neurosurg 2018;129(3):567–851. DOI: 10.3171/2017.4.JNS17234.

26. Yamada S., Inoshita N., Fukuhara N. et al. Therapeutic outcomes in patients undergoing surgery after diagnosis of Cushing’s disease: a single-center study. Endocr J 2015;62(12):1115–25. DOI: 10.1507/endocrj.15-0463.

27. Patil C.G., Prevedello D.M., Lad S.P. et al. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab 2008;93(2):358–362. DOI: 10.1210/jc.2007-2013.

28. Swearingen B., Katznelson L., Miller K. et al. Diagnostic errors after inferior petrosal sinus sampling. J Clin Endocrinol Metab 2004;89(8):3752–63. DOI: 10.1210/jc.2003-032249.

29. Kaskarelis I.S., Tsatalou E.G., Benakis S.V. et al. Bilateral inferior petrosal sinuses sampling in the routine investigation of Cushing’s syndrome: a comparison with MRI. AJR Am J Roentgenol 2006;187(2):562–70. DOI: 10.2214/AJR.06.5079.

30. Lonser R.R., Nieman L., Oldfield E.H. Cushing’s disease: pathobiology, diagnosis, and management. J Neurosurg 2017;126(2):404–17. DOI: 10.3171/2016.1.JNS152119.

31. Mulligan G.B., Faiman C., Gupta M. et al. Prolactin measurement during inferior petrosal sinus sampling improves the localization of pituitary adenomas in Cushing’s disease. Clin Endocrinol (Oxf) 2012;77(2):268–74. DOI: 10.1111/j.1365-2265.2012.04339.x.

32. Sharma S.T., Raff H., Nieman L.K. Prolactin as a marker of successful catheterization during IPSS in patients with ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab 2011;96(12):3687–94. DOI: 10.1210/jc.2011-2149.

33. Lad S.P., Patil C.G., Laws E.R., Katznelson L. The role of inferior petrosal sinus samp ling in the diagnostic localization of Cushing’s disease. Neurosurg Focus 2007;23(3):Е2. DOI: 10.3171./foc.2007.23.3.3.


Review

For citations:


Ivashchenko O.V., Grigoriev A.Yu., Azizyan V.N., Nadezhdina E.Yu., Rebrova O.Yu., Lapshina A.M., Kolesnikova G.S. Outcomes of neurosurgical treatment of patients with non-visualized adenoma and microadenoma of the pituitary gland and with Cushing’s disease. Russian journal of neurosurgery. 2020;22(1):39-48. (In Russ.) https://doi.org/10.17650/1683-3295-2020-22-1-39-48

Views: 907


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X