Preview

Нейрохирургия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Регенеративные методы лечения травмы спинного мозга. Обзор литературы. Часть 2

https://doi.org/10.17650/1683-3295-2019-21-3-83-92

Полный текст:

Аннотация

Проблема лечения травматических повреждений спинного мозга – одна из наиболее сложных и актуальных для современной медицины. В подавляющем большинстве случаев травма спинного мозга (ТСМ) приводит к стойкой инвалидизации пациентов, что имеет как медико-социальные, так и экономические последствия для пациента, его семьи и государства. Современные методы лечения ТСМ обладают крайне ограниченной эффективностью и не позволяют в достаточной степени восстановить утраченные функции центральной нервной системы. Регенеративные методы и, в частности, клеточная терапия – очень многообещающее направление, дающее надежду на эффективное лечение ТСМ. В обзоре освещены проблемы эпидемиологии и патогенеза ТСМ, описаны существующие методы терапии, а также перспективные методы регенеративной терапии. Особое внимание уделено результатам доклинических и клинических исследований в области клеточной терапии. Обзор разделен на 4 части. Во 2-й части описаны методы регенеративной терапии неклеточного происхождения и клеточной терапии.

Об авторах

В. А. Смирнов
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента здравоохранения г. Москвы»; ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия
Владимир Александрович Смирнов


А. А. Гринь
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента здравоохранения г. Москвы»
Россия


Список литературы

1. Rogers W.K., Todd M. Acute spinal cord injury. Best Pract Res Clin Anaesthesiol 2016;30(1):27–39. DOI: 10.1016/j.bpa.2015.11.003.

2. Silva N.A., Sousa N., Reis R.L., Salgado A.J. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2014;114:25–57. DOI: 10.1016/j.pneurobio.2013.11.002.

3. Cramer S.C., Lastra L., Lacourse M.G., Cohen M.J. Brain motor system function after chronic, complete spinal cord injury. Brain 2005;128(Pt 12):2941–50. DOI: 10.1093/brain/awh648.

4. Jain N., Catania K.C., Kaas J.H. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 1997;386(6624):495–8. DOI: 10.1038/386495a0.

5. Levy W.J. Jr, Amassian V.E., Traad M., Cadwell J. Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res 1990;510(1):130–4. DOI: 10.1016/0006-8993(90)90738-w.

6. Cristante A.F., Barros-Filho T.E., Tatsui N. et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009;47(10):733–8. DOI: 10.1038/sc.2009.24.

7. Gage F.H., Coates P.W., Palmer T.D. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 1995;92(25):11879–83. DOI: 10.1073/pnas.92.25.11879.

8. Gage F.H. Mammalian neural stem cells. Science 2000;287(5457):1433–8. DOI: 10.1126/science.287.5457.1433.

9. Potten C.S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990;110(4):1001–20.

10. Bottai D., Cigognini D., Madaschi L. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice. Exp Neurol 2010;223(2):452–63. DOI: 10.1016/j.expneurol.2010.01.010.

11. Cloutier F., Siegenthaler M.M., Nistor G., Keirstead H.S. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med 2006;1(4):469–79. DOI: 10.2217/17460751.1.4.469.

12. Faulkner J., Keirstead H.S. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol 2005;15(2):131–42. DOI: 10.1016/j.trim.2005.09.007.

13. Keirstead H.S., Nistor G., Bernal G. et al. Human embryonic stem cell derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005;25(19):4694–705. DOI: 10.1523/JNEUROSCI. 0311-05.2005.

14. Leavitt A.D., Hamlett I. Homologous recombination in human embryonic stem cells: a tool for advancing cell therapy and understanding and treating human disease. Clin Transl Sci 2011;4(4):298–305. DOI: 10.1111/j.1752-8062.2011.00281.x.

15. Miura K., Okada Y., Aoi T. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009;27(8): 743–5. DOI: 10.1038/nbt.1554.

16. Muheremu A., Peng J., Ao Q. Stem cell based therapies for spinal cord injury. Tissue Cell 2016;48(4):328–33. DOI: 10.1016/j.tice.2016.05.008.

17. Nguyen L.T., Nguyen A.T., Vu C.D. et al. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial. BMC Pediatr 2017;17(1):104. DOI: 10.1186/s12887-017-0859-z.

18. Parish C.L., Thompson L.H. Developing stem cell-based therapies for neural repair. Front Cell Neurosci 2013;7:198. DOI: 10.3389/fncel.2013.00198.

19. Park D.H., Lee J.H., Borlongan C.V. et al. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 2011;7(1):181–94. DOI: 10.1007/s12015-010-9163-0.

20. Pittenger M.F., Mosca J.D., McIntosh K.R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 2000;251:3–11.

21. Puri M.C., Nagy A. Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 2012;30(1):10–4. DOI: 10.1002/stem.788.

22. Salewski R.P., Buttigieg J., Mitchell R.A. et al. The generation of definitive neural stem cells from PiggyBac transposoninduced pluripotentstem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev 2013;22(3):383–96. DOI: 10.1089/scd.2012.0218.

23. Saporta S., Kim J.J., Willing A.E. et al. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003;12(3):271–8. DOI: 10.1089/152581603322023007.

24. Sun T., Ma Q.H. Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2013;47(3):938–45. DOI: 10.1007/s12035-012-8388-0.

25. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663–76. DOI: 10.1016/j.cell.2006.07.024.

26. Tsuji O., Miura K., Fujiyoshi K. et al. Cell therapy for spinal cord injury by neural stem/ progenitor cells derived from iPS/ES cells. Neurotherapeutics 2011;8(4):668–76.

27. Caroni P., Schwab M.E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1988;1(1):85–96.

28. Caroni P., Schwab M.E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 1988;106(4):1281–8. DOI: 10.1083/jcb.106.4.1281.

29. Bregman B.S., Kunkel-Bagden E., Schnell L. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 1995;378(6556): 498–501. DOI: 10.1038/378498a0.

30. Schnell L., Schwab M.E. Axonal regeneration in the rat spinal cord produced by an antibody against myelinassociated neurite growth inhibitors. Nature 1990;343(6255):269–72. DOI: 10.1038/343269a0.

31. GrandPré T., Li S., Strittmatter S.M. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 2002;417(6888):547–51. DOI: 10.1038/417547a.

32. Li S., Strittmatter S.M. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 2003;23(10):4219–27.

33. Fouad K., Klusman I., Schwab M.E. Regenerating corticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the antiNogo-A antibody IN-1. Eur J Neurosci 2004;20(9):2479–82. DOI: 10.1111/j.1460-9568.2004.03716.x.

34. Steward O., Sharp K., Yee K.M., Hofstadter M. A re-assessment of the effects of Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp Neurol 2008;209(2):446–68. DOI: 10.1016/j.expneurol.2007.12.010.

35. Li S., Liu B.P., Budel S. et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 2004;24(46):10511–20. DOI: 10.1523/JNEUROSCI. 2828-04.2004.

36. Shin J.C., Kim K.N., Yoo J. et al. Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plast 2015; 2015:630932. DOI: 10.1155/2015/630932.

37. Xu G., Nie D.-Y., Chen J.-T. et al. Recombinant DNA vaccine encoding multiple domains related to inhibition of neurite outgrowth: a potential strategy for axonal regeneration. J Neurochem 2004;91(4):1018–23. DOI: 10.1111/j.1471-4159.2004.02803.x.

38. Dickson B.J. Rho GTPases in growth cone guidance. Curr Opin Neurobiol 2001;11(1):103–10.

39. Song H., Poo M. The cell biology of neuronal navigation. Nat Cell Biol 2001;3(3):E81–8. DOI: 10.1038/35060164.

40. Jalink K., van Corven E.J., Hengeveld T. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 1994;126(3):801–10. DOI: 10.1083/jcb.126.3.801.

41. Dergham P., Ellezam B., Essagian C. et al. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 2002;22(15):6570–7. DOI: 20026637.

42. Boato F., Hendrix S., Huelsenbeck S.C. et al. C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci 2010;123(Pt 10):1652–62. DOI: 10.1242/jcs.066050.

43. Fournier A.E., Takizawa B.T., Strittmatter S.M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 2003;23(4):1416–23.

44. Fehlings M.G., Theodore N., Harrop J. et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 2011;28(5):787–96. DOI: 10.1089/neu.2011.1765.

45. Maisonpierre P.C., Belluscio L., Friedman B. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 1990;5(4):501–9.

46. Costigan M., Befort K., Karchewski L. et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002;3:16.

47. Granger C.V., Albrecht G.L., Hamilton B.B. Outcome of comprehensive medical rehabilitation: measurement by PULSES profile and the Barthel Index. Arch Phys Med Rehabil 1979;60(4):145–54.

48. Tuszynski M.H., Peterson D.A., Ray J. et al. Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol 1994;126(1):1–14. DOI: 10.1006/exnr.1994.1037.

49. Tuszynski M.H., Gabriel K., Gage F.H. et al. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 1996;137(1):157–73. DOI: 10.1006/exnr.1996.0016.

50. Bregman B.S., McAtee M., Dai H.N., Kuhn P.L. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997;148(2):475–94. DOI: 10.1006/exnr.1997.6705.

51. Kwon B.K., Soril L.J., Bacon M. et al. Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury – how much is enough? Exp Neurol 2013;248:30–44. DOI: 10.1016/j.expneurol.2013.05.012.

52. Liu Y., Kim D., Himes B.T. et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 1999;19(11):4370–87.

53. Tuszynski M.H., Grill R., Jones L.L. et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol 2003;181(1):47–56. DOI: 10.1016/s0014-4886(02)00055-9.

54. Bradbury E.J., Khemani S., Von R. et al. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci 1999;11(11):3873–83.

55. Ramer M.S., Priestley J.V., McMahon S.B. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000;403(6767):312–6. DOI: 10.1038/35002084.

56. Blesch A., Tuszynski M.H. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J Comp Neurol 2003;467(3):403–17. DOI: 10.1002/cne.10934.

57. Facchiano F., Fernandez E., Mancarella S. et al. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 2002;97(1):161–8. DOI: 10.3171/jns.2002.97.1.0161.

58. Kasai M., Jikoh T., Fukumitsu H., Furukawa S. FGF-2-responsive and spinal cord-resident cells improve locomotor function after spinal cord injury. J Neurotrauma 2014;31(18):1584–98. DOI: 10.1089/neu.2009.1108.

59. Adeeb N., Hose N., Tubbs R.S., Mortazavi M.M. Stem cell therapy for spinal cord injury: cellular options. Austin J Cerebrovasc Dis Stroke 2014;1(3):1012.

60. Li J., Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013;2013:786475. DOI: 10.1155/2013/786475.

61. Nakamura M., Nagoshi N., Fujiyoshi K. et al. Regenerative medicine for spinal cord injury: current status and open issues. Inflamm Regen 2009;29(3):198–203.

62. Willerth S.M., Sakiyama-Elbert S.E. Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev 2008;60(2):263–76. DOI: 10.1016/j.addr.2007.08.028.

63. Vaquero J., Zurita M., Rico M.A. et al. An approach to personalized cell therapy in chronic complete paraplegia: The Puerta de Hierro phase I/II clinical trial. Cytotherapy 2016;18(8):1025–36. DOI: 10.1016/j.jcyt.2016.05.003.

64. Young W. Spinal cord regeneration. Cell Transplant 2014;23(4–5):573–611. DOI: 10.3727/096368914X678427.

65. Conley B.J., Young J.C., Trounson A.O., Mollard R. Derivation, propagation and differentiation of human embryonic stem cells. Int J Biochem Cell Biol 2004;36(4):555–67. DOI: 10.1016/j.biocel.2003.07.003.

66. Dunham N.W., Miya T.S. A note on a simple apparatus for detecting a neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc 1957;46(3):208–9.

67. Erceg S., Ronaghi M., Oria M. et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 2010;28(9):1541–9. DOI: 10.1002/stem.489.

68. Gil J.E., Woo D.H., Shim J.H. et al. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Lett 2009;583(3):561–7. DOI: 10.1016/j.febslet.2008.12.061.

69. Liu S., Qu Y., Stewart T.J. et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 2000;97(11):6126–31.

70. Nistor G.I., Totoiu M.O., Haque N. et al. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005;49(3):385–96. DOI: 10.1002/glia.20127.

71. McDonald J.W., Liu X.-Z., Qu Y. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999;5(12):1410–2. DOI: 10.1038/70986.

72. Kumagai G., Okada Y., Yamane J. et al. Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One 2009;4(11):e7706. DOI: 10.1371/journal.pone.0007706.

73. Medalha C.C., Jin Y., Yamagami T. et al. Transplanting neural progenitors into a complete transection model of spinal cord injury. J Neurosci Res 2014;92(5): 607–18. DOI: 10.1002/jnr.23340.

74. Zhang W., Fang X., Zhang C. et al. Transplantation of embryonic spinal cord neurons to the injured distal nerve promotes axonal regeneration after delayed nerve repair. Eur J Neurosci 2017:45(6):750–62. DOI: 10.1111/ejn.13495.

75. Li J.-Y., Christophersen N.S., Hall V. et al. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 2008;31(3):146–53. DOI: 10.1016/j.tins.2007.12.001.

76. Brederlau A., Correia A.S., Anisimov S.V. et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006;24(6):1433–40. DOI: 10.1634/stemcells.2005-0393.

77. Chambers S.M., Fasano C., Papapetrou E.P. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27(3):275–80. DOI: 10.1038/nbt.1529.

78. Chapman A.R., Scala C.C. Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy. Kennedy Inst Ethics J 2012;22(3):243–61.

79. Priest C.A., Manley N.C., Denham J. et al. Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med 2015;10(8):939–58. DOI: 10.2217/rme.15.57.

80. Scott C.T., Magnus D. Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med 2014;3(12):1398–401. DOI: 10.5966/sctm.2014-0147.

81. Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861–72. DOI: 10.1016/j.cell.2007.11.019.

82. Huangfu D., Maehr R., Guo W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 2008;26(7):795–7. DOI: 10.1038/nbt1418.

83. Kim J.B., Sebastiano V., Wu G. et al. Oct4-induced pluripotency in adult neural stem cells. Cell 2009;136(3):411–9. DOI: 10.1016/j.cell.2009.01.023.

84. Smith R.R., Shum-Siu A., Baltzley R. et al. Effects of swimming on functional recovery after incomplete spinal cord injury in rats. J Neurotrauma 2006;23(6):908–19. DOI: 10.1089/neu.2006.23.908.

85. Yu J., Hu K., Smuga-Otto K. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324(5928):797–801. DOI: 10.1126/science.1172482.

86. Fujimoto Y., Abematsu M., Falk A. et al. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepitheliallike stem cells. Stem Cells 2012;30(6):1163–73. DOI: 10.1002/stem.1083.

87. Kobayashi Y., Okada Y., Itakura G. et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 2012;7(12):e52787. DOI: 10.1371/journal.pone.0052787.

88. Lu P., Woodruff G., Wang Y. et al. Longdistance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014;83(4):789–96. DOI: 10.1016/j.neuron.2014.07.014.

89. Nori S., Okada Y., Yasuda A. et al. Grafted human-induced pluripotent stem-cellderived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci USA 2011;108(40):16825–30. DOI: 10.1073/pnas.1108077108.

90. Nutt S.E., Chang E.-A., Suhr S.T. et al. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol 2013;248:491–503. DOI: 10.1016/j.expneurol.2013.07.010.

91. Romanyuk N., Amemori T., Turnovcova K. et al. Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transplant 2015;24(9):1781–97. DOI: 10.3727/096368914X684042.

92. Tsuji O., Miura K., Okada Y. et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 2010;107(28):12704–9. DOI: 10.1073/pnas.0910106107.

93. Hawryluk G.W., Mothe A.J., Chamankhah M. et al. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev 2012;21(3): 432–47. DOI: 10.1089/scd.2011.0242.

94. Hawryluk G.W.J., Spano S., Chew D. et al. An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: a key role for remyelination. Cell Transplant 2014;23(3):365–80. DOI: 10.3727/096368912X662408.

95. Nakamura M., Tsuji O., Nori S. et al. Cell transplantation for spinal cord injury focusing on iPSCs. Expert Opin Biol Ther 2012;12(7):811–21. DOI: 10.1517/14712598.2012.681774.

96. Nori S., Tsuji O., Okada Y. et al. [Therapeutic potential of induced pluripotent stem cells for spinal cord injury (In Japanese)]. Brain Nerve 2012;64(1):17–27.

97. Douvaras P., Wang J., Zimmer M. et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports 2014;3(2):250–9. DOI: 10.1016/j.stemcr.2014.06.012.

98. Karimi-Abdolrezaee S., Schut D., Wang J., Fehlings M.G. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS One 2012;7(5):e37589. DOI: 10.1371/journal.pone.0037589.

99. Lin X., Zhao T., Walker M. et al. Transplantation of pro-oligodendroblasts, preconditioned by LPS-stimulated microglia, promotes recovery after acute contusive spinal cord injury. Cell Transplant 2016;25(12):2111–28. DOI: 10.3727/096368916X692636.

100. Myers S.A., Bankston A.N., Burke D.A. et al. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp Neurol 2016;283(Pt B):560–72. DOI: 10.1016/j.expneurol.2016.04.009.

101. Sharma A., Gokulchandran N., Chopra G. et al. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplant 2012;21 Suppl 1:S79–90. DOI: 10.3727/096368912X633798.

102. Wang S., Bates J., Li X. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 2013;12(2):252–64. DOI: 10.1016/j.stem.2012.12.002.

103. Yang W.Z., Zhang Y., Wu F. et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med 2010;8:75. DOI: 10.1186/1479-5876-8-75.

104. Treatment for spinal cord injury to start clinical trial funded by California’s Stem Cell Agency. Available at: http://www. cirm.ca.gov/about-cirm/newsroom/pressreleases/08262014/treatment-spinal-cordinjury-start-clinical-trial-funded.

105. Jarocha D., Milczarek O., Kawecki Z. et al. Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury. Stem Cell Transl Med 2014;3(3):395–404. DOI: 10.5966/sctm.2013-0141.

106. Karumbayaram S., Novitch B.G., Patterson M. et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 2009;27(4):806–11. DOI: 10.1002/stem.31.

107. Sareen D., O’Rourke J.G., Meera P. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 2013;5(208):208ra149. DOI: 10.1126/scitranslmed.3007529.

108. Khazaei M., Ahuja C.S., Fehlings M.G. Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol 2017;4:152. DOI: 10.3389/fcell.2016.00152.

109. Kim B.G., Hwang D.H., Lee S.I. et al. Stem cell-based cell therapy for spinal cord injury. Cell Transplant 2007;16(4):355–64. DOI: 10.3727/000000007783464885.

110. Li W., Huang L., Zeng J. et al. Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells. Mol Psychiatry 2018;23(3):499–508. DOI: 10.1038/mp.2016.191.

111. Ma M.S., Boddeke E., Copray S. Pluripotent stem cells for Schwann cell engineering. Stem Cell Rev 2015;11(2): 205–18. DOI: 10.1007/s12015-014-9577-1.

112. Kwon B.K., Liu J., Messerer C. et al. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc Natl Acad Sci USA 2002;99(5): 3246–51. DOI: 10.1073/pnas.052308899.


Для цитирования:


Смирнов В.А., Гринь А.А. Регенеративные методы лечения травмы спинного мозга. Обзор литературы. Часть 2. Нейрохирургия. 2019;21(3):83-92. https://doi.org/10.17650/1683-3295-2019-21-3-83-92

For citation:


Smirnov V.A., Grin A.A. Regenerative treatment of spinal cord injury. Literature review. Part 2. Russian journal of neurosurgery. 2019;21(3):83-92. (In Russ.) https://doi.org/10.17650/1683-3295-2019-21-3-83-92

Просмотров: 428


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)