Computerized predictive model for differential diagnosis of normal pressure hydrocephalus based on complex analysis of MRI image
https://doi.org/10.17650/1683-3295-2019-21-3-44-51
Abstract
Background. The main problem is to differentiate idiopathic normal pressure hydrocephalus (iNPH) with other neurodegenerative diseases accompanied by similar clinical presentation. For this purpose, a number of neuroimaging and invasive methods were proposed.
The study objective is to assess most reliable magnetic resonance (MR) symptoms of iNPH and to create a prognostic model for differential diagnosis of iNPH by these criteria.
Materials and methods. MR-data of 213 iNPH, 144 neurodegenerative (Alzheimer disease, Parkinson disease and early mild cognitive impairment) patients and 79 healthy age-matched controls were retrospectively analyzed. Following criteria were assessed: Evans Index, size of the third ventricle, size of temporal horns, disproportionately enlarged subarachnoid space hydrocephalus, focal convexital sulci enlargement, callosal angle, periventricular hyperintensities, focal subcortical gliosis and perivascular spaces enlargement. One-way ANOVA was used to explore differences between groups. Classification matrix was formed by discriminant analysis.
Results. Differential model was established and Excel-tab-calculator was created for complex computed assessment of MR data and differential diagnosis of iNPH patients. Prognostic accuracy of model for iNPH reaches 99.5 %, for degenerative disorders – 89 %, common diagnostic accuracy is 92 %.
Conclusion. Advantages of complex approach for assessment of MR-data in iNPH patients were underlined. Prognostic model for prediction of iNPH based on MR criteria was established.About the Authors
G. V. GavrilovRussian Federation
A. V. Stanishevskiy
Russian Federation
B. V. Gaydar
Russian Federation
D. V. Svistov
Russian Federation
K. N. Babichev
Russian Federation
B. G. Adleyba
Russian Federation
References
1. Jaraj D., Rabiei K., Marlow T. et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology 2014;82(16): 1449–54. DOI: 10.1212/WNL. 0000000000000342.
2. Rosell C.M., Andersson J., Kockum K. et al. Prevalence of idiopathic normal pressure hydrocephalus – a pilot study in Jämtland, Sweden. Fluids Barriers CNS 2015;12(Suppl 1):55. DOI: 10.1186/2045-8118-12-S1-O55.
3. Toma A.K., Papadopoulos M.C., Stapleton S. et al. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien) 2013;155(10): 1977–80. DOI: 10.1007/s00701-013-1835-5.
4. Tullberg M., Persson J., Petersen J. et al. Shunt surgery in idiopathic normal pressure hydrocephalus is cost-effective – a cost utility analysis. Acta Neurochir (Wien) 2018;160(3):509–18. DOI: 10.1007/s00701-017-3394-7.
5. Lemcke J., Stengel D., Stockhammer F. et al. Nationwide incidence of normal pressure hydrocephalus(NPH) assessed by insurance claim data in Germany. Open Neurol J 2016;10:15–24. DOI: 10.2174/1874205X01610010015.
6. Cabral D., Beach T.G., Vedders L. et al. Frequency of Alzheimer’s disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimers Dement 2011;7(5):509–13. DOI: 10.1016/j.jalz.2010.12.008.
7. Lundin F., Tisell A., Dahlqvist Leinhard O. et al. Reduced thalamic N-acetylaspartate in idiopathic normal pressure hydrocephalus: a controlled 1H-magnetic resonance spectroscopy study of frontal deep white matter and the thalamus using absolute quantification. J Neurol Neurosurg Psychiatry 2011;82(7):772–8. DOI: 10.1136/jnnp.2010.223529.
8. Perry A., Graffeo C.S., Fattahi N. et al. Clinical correlation of abnormal findings on magnetic resonance elastography in idiopathic normal pressure hydrocephalus. World Neurosurg 2017;99:695–700. DOI: 10.1016/j.wneu.2016.12.121.
9. Kamiya K., Hori M., Irie R. et al. Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus. Neuroimage Clin 2017;14:663–71. DOI: 10.1016/j.nicl.2017.03.003.
10. Yin L.K., Zheng J.J., Zhao L. et al. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2017;136(5):434–9. DOI: 10.1111/ane.12750.
11. Evans W.A.J. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 1942;47:931–7.
12. Jaraj D., Rabiei K., Marlow T. et al. Estimated ventricle size using Evans index: reference values from a population-based sample. Eur J Neurol 2017;24(3):468–74. DOI: 10.1111/ene.13226.
13. Shinoda N., Hirai O., Hori S. et al. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. J Neurosurg 2017;127(6):1436–42. DOI: 10.3171/2016.9.JNS161080.
14. Svendsen P., Duru O. Visibility of the temporal horns on computed tomography. Neuroradiology 1981;21(3):139–44.
15. Ishii K., Kanda T., Harada A. et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 2008;18(11):2678–83. DOI: 10.1007/s00330-008-1044-4.
16. Ringstad G., Vatnehol S.A.S., Eide P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 2017;140(10):2691–705. DOI: 10.1093/brain/awx191.
17. Doubal F.N., MacLullich A.M., Ferguson K.J. et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010;41(3): 450–4. DOI: 10.1161/STROKEAHA. 109.564914.
18. Sasaki M., Honda S., Yuasa T. et al. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 2008;50(2):117–22. DOI: 10.1007/s00234-007-0318-x.
19. Narita W., Nishio Y., Baba T. et al. High-convexity tightness predicts the shunt response in idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 2016;37(10):1831–7. DOI: 10.3174/ajnr.A4838.
20. Virhammar J., Laurell K., Cesarini K.G., Larsson E.M. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 2014;35(12):2311–8. DOI: 10.3174/ajnr.A4046.
21. Kockum K., Lilja-Lund O., Larsson E.M. et al. The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol 2018;25(3):569–76. DOI: 10.1111/ene.13555.
Review
For citations:
Gavrilov G.V., Stanishevskiy A.V., Gaydar B.V., Svistov D.V., Babichev K.N., Adleyba B.G. Computerized predictive model for differential diagnosis of normal pressure hydrocephalus based on complex analysis of MRI image. Russian journal of neurosurgery. 2019;21(3):44-51. (In Russ.) https://doi.org/10.17650/1683-3295-2019-21-3-44-51