Preview

Russian journal of neurosurgery

Advanced search

The modeling of hemodynamic changes in cerebral arteries and cerebral aneurysms under condition of cerebral angiospasm

https://doi.org/10.17650/1683-3295-2013-0-4-16-25

Abstract

Objective: to study the changes of blood streams and main hemodynamic parameters with the help of mathematical modeling of blood flow through cerebral arteries and in cerebral aneurysm when the vessel lumen is constant and in the case of various variants of angiospasm. Material and methods: the computer design method was used in our study to determine the changes of hemodynamic parameters in aneurysm, occurring because of angiospasm of afferent vessels by the example of the model of cerebral aneurysm created with the usage of computer design as well as by the example of 2 models of basilar aneurysm and anterior communicating aneurysm based on the data of computed tomography angiography. We examined the influence of changed blood flow velocity and shaped of blood flow profiles on to shear stress especially under conditions of blood flow changes because of various variants of afferent vessels angiospasm. Results: the analysis of hemodynamic characteristics of aneurysm models under condition of various variants of angiospasm revealed that the narrowing of the lumen of afferent vessel leads to significantly increase of the blood flow velocity both in the spastic area and in aneurysm itself, the profile of blood flow is significantly changed especially in the case of consequential spastic areas of afferent vessel or aneurysm localization at the junction of several vessels. The shear stress is increased at the area of shock blood wave hit in aneurysm that leads to increase the risk of repeated aneurysm rupture. Conclusion: the mathematical modeling allows assaying, understanding and visual presenting the processes occurring during blood flow through the vessels and in aneurysm as well as their changes because of angiospasm. The creating of mathematical models of hemodynamic changes under condition of angiospasm will allow understanding and predicting the character of complications which can be occur in acute period of hemorrhage (e.g. repeated rupture of aneurysm), that is of great importance for selection of surgical strategy.

About the Authors

V. V. Krylov
НИИ СП им. Н.В. Склифосовского
Russian Federation


A. V. Prirodov
НИИ СП им. Н.В. Склифосовского
Russian Federation


I. V. Arkhipov
РНЦХ им. Б.В. Петровского РАМН
Russian Federation


A. V. Gavrilov
НИИЯФ им. Д.В. Скобельцына МГУ им. М.В. Ломоносова
Russian Federation


E. V. Grigorieva
НИИ СП им. Н.В. Склифосовского
Russian Federation


G. V. Ganin
Государственная классическая академия им. Маймонида
Russian Federation


A. M. Iatchenko
НПФ ООО «Гаммамед Софт»
Russian Federation


References

1. Гаврилов А.В., Архипов И.В., Куликов И.В., Парусников А.В., Ятченко А.М. 3D цифровой пациент. Математическое моделирование аневризм сосудов головного мозга.// Образовательный цикл “Сосудистая нейрохирургия”. Федеральный центр нейрохирургии. - Тюмень. - 2013. - C. 23-25

2. Григорьева Е.В., Годков И.М., Полунина Н.А., Крылов В.В. Особенности гемодинамики интракраниальных аневризм. // Нейрохирургия. - 2013. - N. 3. - С. 15-17

3. Крылов В.В., Годков И.М. Хирургия аневризм головного мозга. Под ред. В.В. Крылова. // М.: Новое время, 2011. - Том 1. - С. 23-35

4. Крылов В.В., Годков И.М. Гемодинамические факторы образования, роста и разрыва аневризм головного мозга. // Неврологический журнал. - 2011. - N 1. - С. 4-9

5. Крылов В.В., Гусев С.А., Титова Г.П., Гусев А.С. Сосудистый спазм при субарахноидальном кровоизлиянии. Клинический атлас. // М.: Макцентр, 2000. 191 С.

6. Лебедев В.В., Крылов В.В., Шелковский В.Н. Клиника, диагностика и лечение внутричепеных артериальных аневризм в остром периоде кровоизлияния. // М.: Антидор, 1996. - 217 С.

7. Чупахин А.П., Черевко А.А., с соавт. Измерения и анализ локальной церебральной гемодинамики у больных с сосудистыми мальформациями головного мозга. // Патология кровообращения и кардиохирургия. - 2012. - № 4. - С. 27-31.

8. Шарабчиев Ю.Т., Дудина Т.В. Показатели здоровья в цифрах и фактах. Справочник. // Минск, «Книжный дом», 2004. 315 С.

9. Adams H.P., Kassell N.F., Torner J.C., Haley E.C. Predicting cerebral ischemia after aneurysmal subarachnoid hemorrhage: influences of clinical condition, CT results, and antifibrinolytic therapy. A report of the Cooperative Aneurysm Study. // Neurology. - 1987. - Vol. 37. - Р. 1586-1591

10. Bazilevs Y., Hsu M.C., Zhang Y., Wang W., Kvamsdal T., Hentschel S., Isaksen J.G. Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. // Biomech, Model. Mechanobiol. - 2010. - Vol. 9:4. - Р. 481-98

11. Cebral J.R., Hendrickson S., Putman C.M.: Hemodynamics in a lethal basilar artery aneurysm just before its rupture. // Am. J. Neuroradiology. - 2009. - Vol. 30. - Р. 95-98

12. Cebral J.R., Castro M.A., Burgess J.E., Pergolizzi R., Putman C.M. Characterization of Cerebral Aneurysm for Assessing Risk of Rupture Using Patient-Specific Computational Hemodynamics Models // Am. J. Neurorad. - 2005. - Vol. 26. - Р. 2550-2559.

13. Duangkamol Poltem: A Review: Hemodynamics of Cerebral Aneurysm with Mathematical Modeling. // International Mathematical Forum. - 2012. - Vol. 7: 54. - Р. 2687- 2693.

14. Drebin R.A., Carpenter L., Hanrahan P. Volume rendering. SIGGRAPH‘88 // Proceedings of the 15th annual conference on Computer graphics and interactive techniques. - 1988. - Р. 65-74

15. Eklunda A., Dufortb P., Forsbergc D., LaConte S.M. Medical image processing on the GPU - Past, present and future. // Medical Image Analysis. - 2013. - Vol. 17: 8. - Р. 1073- 1094

16. Falkovich G. Fluid Mechanics. // Cambridge University Press. - 2011. - 180 P.

17. Hassan T., Ezura M., Timofeev E.V., Tominaga T., Saito T., Takahashi A., Takayama K., Yoshimoto T. Computational Simulation of Therapeutic Parent Artery Occlusion to Treat Giant Vertebrobasilar Aneurysm. // Am. J. Neurorad. - 2004. - Vol. 25:1. - Р. 63-68

18. Hoskins P.R., Hardman D.: Three-dimensional imaging and computational modeling for estimation of wall stresses in arteries. // Br. J. Radiol. - 2009. - Vol. 82. - Р. 3-17

19. Heng Y., Gu L. GPU-based Volume Rendering for Medical Image Visualization. // 27th Annual International Conference of the Engineering in Medicine and Biology Society. - 2006. - Р. 5145-5148

20. Jou L.D., Quick C.M., Young W.L., Lawton M.T., Higashida R., Martin A., Saloner D. Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysms. // Am. J. Neuroradiology. - 2003. - Vol. 24:9. - Р. 1804-1810

21. Kassell N.F., Torner J.C., Haley E.C. Jr., Jane J.A., Adams H.P., Kongable G.L. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: Overall management results. // J Neurosurg. - 1990. - Vol. 73. - Р. 18-36

22. Kassell N.F., Torner J.C., Jane J.A., Haley E.C. Jr., Adams H.P.: The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: Surgical results. // J Neurosurg. - 1990. - Vol. 73. - Р. 37-47

23. Kassell N.F., Haley J.C., Apperson-Hansen C.: Randomized, double-blind, vehicle-controlled trial of tirilazedmesylate patients with aneurysm subarachnoid hemorrhage: a cooperative study in Europe, Australia and New Zeland. // J. Neurosurg. - 1996. - Vol. 84:2. - Р. 221-228

24. Lorensen W.E., Cline H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH // Computer Graphics. - 1987. - Vol. 21:4. - Р. 163-169

25. Oshima M., Torii R., Kobayashi T., Taniguchi N., Takagi K. Finite element simulation of blood flow in the cerebral artery. // Comp. Meth. Appl. Mech. Eng. - 2001. - Vol. 191 - Р. 6-7

26. Papaioannou T.G., Stefanadis C. Vascular Wall Shear Stress: Basic Principles and Methods. // Hellenic J Cardiol. - 2005. - Vol. 46. - Р. 9-15

27. Pöthkow K., Weber B., Hege H. Probabilistic Marching Cubes. // Computer Graphics Forum. - 2011. - Vol. 30:3. - Р. 931-940

28. Reynolds O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. // Philosophical Transactions of the Royal Society. - 1883. - Vol. 174. - Р. 935-982

29. Russell J.H., Kelson N., Barry M., Pearcy M., Fletcher D.F., Winter C.D. FRACS. Computational Fluid Dynamic Analysis of Intracranial Aneurysmal Bleb Formation // Neurosurgery. - 2013. - Р. 187-193

30. Sforza D.M., Putman C.M., Cebral J.R. Haemodynamics of Cerebral Aneurysm. // Annu Rev Fluid Mech. - 2009. - January 1. - Vol. 41. - Р. 91-107

31. Shekhar R., Fayyad E., Yagel R., Cornhill J.F. Octree-based decimation of marching cubes surfaces. // Visualization ‘96, Proceedings. - 1996. - Р. 335-342.

32. Solenski N.J., Haley E.C. Jr., Kassell N.F., Kongable G., Germanson T., Truskowski L., Torner J.C. Medical complications of aneurismal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. // Crit Care Med. - 1995. - Vol. 23. - Р. 1007-1017.

33. Szafranskik K. Complex Analysis of Rupture Risk of Intracranial Saccular Aneurysms upon Hemodynamic and Geometric Parameters. // Biocybernetics and Biomedical Engineering. - 2009. - Vol. 29: 1. - Р. 43-59.

34. Torii R., Oshima M., Kobayashi T., Takagi K., Tezduyar T. Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. // Computer Methods in Applied Mechanics and Engineering. - 2009. - Vol. 198: 45-46. - Р. 3613-3621.

35. Xu Bai-Nan, Wang Fu-Yu, Liu Lei, Zhang Xiao-Jun, Ju Hai-Yue. Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms. // Neurosurg. Rev. - 2011. - Vol. 34:1. - Р. 39-43.

36. Xiang J., Natarajan S., Tremmel M., Ma D., Mocco J., Hopkins L., Siddiqui A., Levy E., Hui Meng. Hemodynamic- Morphologic Discriminants for Intracranial Aneurysm Rupture. // Stroke. - 2011. - Vol. 42. - P. 144-152.

37. Watton P.N., Ventikos Y., Holzapfel G.A. Modelling Cerebral Aneurysm Evolution. // Stud Mechanobiol Tissue Eng Biomater. - 2011. - Vol. 7. - Р. 373-399.


Review

For citations:


Krylov V.V., Prirodov A.V., Arkhipov I.V., Gavrilov A.V., Grigorieva E.V., Ganin G.V., Iatchenko A.M. The modeling of hemodynamic changes in cerebral arteries and cerebral aneurysms under condition of cerebral angiospasm. Russian journal of neurosurgery. 2013;(4):16-25. (In Russ.) https://doi.org/10.17650/1683-3295-2013-0-4-16-25

Views: 790


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X