Preview

Нейрохирургия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Применение регенеративных и остеоиндуктивных технологий в практической медицине

Полный текст:

Аннотация

Проведен аналитический обзор литературы о современном состоянии вопроса применения клеточных технологий и тканевой инженерии при костной пластике и перспективам их использования при стабилизирующих вмешательствах на позвоночнике. Нами проанализировано 119 статей из базы данных PUBMED, Google Scholar в зарубежных рецензируемых периодических изданиях. Глубина поиска составила 27 лет (1989-2015 гг.). Обсуждены вопросы влияния факторов роста на костную регенерацию и формирование костного блока, оптимальные свойства костнозамещающего материала. Рассмотрено влияние стволовых клеток, медиаторов воспаления на процессы остеорепарации и остеоинтеграции.

Об авторах

Анатолий Алексеевич Булкин
ФГБУ Приволжский федеральный медицинский исследовательский центр Минздрава России
Россия


Андрей Евгеньевич Боков
ФГБУ Приволжский федеральный медицинский исследовательский центр Минздрава России
Россия


Александр Яковлевич Олейник
ФГБУ Приволжский федеральный медицинский исследовательский центр Минздрава России
Россия


Сергей Геннадьевич Млявых
ФГБУ Приволжский федеральный медицинский исследовательский центр Минздрава России
Россия


Список литературы

1. Einhorn T.A. Enhancement of fracture-healing. J Bone Joint Surg Am. 1995; 77: 940-956.

2. Marsh D. Concepts of fracture union, delayed union, and nonunion. ClinOrthop. 1998: S22-30.

3. Praemer A., Furner S., Rice D.P. Musculoskeletal Conditions in the United States. 2. RosemontHL: The American Academy of Orthopaedic Surgeons; Park Ridge, Illinois: 1999.

4. Gothard D., Smith E.L., Kanczler J.M.et al. Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater. 2014 Oct 6; 28: 166-207; discussion 207-8.

5. Boden S.D. et al. Biology of lumbar spine fusion and use of bone graft substitutes: present, future, and next generation. Tissue Eng. 2000 Aug; 6(4): 383-99.

6. Bessa P.C., Casal M., Reis R.L. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue EngRegen Med. 2008; 2(2- 3): 81-96.

7. Sundelacruz S., Kaplan D.L. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009; 20(6): 646-655.

8. Roy T.D., Simon J.L., Ricci J.L. et al. Performance of degradable composite bone repair products made via threedimensional fabrication techniques. J Biomed Mater Res A. 2003; 66(2): 283-291.

9. Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26(27): 5474- 5491.

10. Buser D., Schenk R.K., Steinemann S. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991; 25(7): 889-902.

11. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al.Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49.

12. Lieder R., Sigurjonsson O.E. The Effect of Recombinant Human Interleukin Osteogenic Differentiation and YKL Mesenchymal Stem Cells. Biores Open Access. 2014 Feb 1; 3(1): 2910.1089/biores.2013.0035.

13. Bueno E.M., Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol. 2009; 5(12): 685- 697.

14. Neman J., Hambrecht A., Cadry C., Jandial R. Stem cell therapeutic potential for bone tissue engineering. Biologics. 2012; 6: 47 10.2147/BTT.S22407. Epub 2012 Mar 9.

15. Lee T.H., Huang.Y.H., Chang N.K. et al.Characterization and spinal fusion effect of rabbit mesenchymal stem cells. BMC Res Notes. 2013 Dec 10; 6: 528. doi: 10.1186/1756

16. Niu C.C., Lin S.S., Yuan L.J. et al.Identification of mesenchymal stem cells and osteogenic factors in bone marrow aspirate and peripheral blood for spinal fusion by flow cytometry and proteomic analysis. J OrthopSurg Res. 2014 May 3; 9: 32. doi: 10.1186/1749

17. Granero Jansen E.D., Mortlock D.P., Spagnoli A. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009 Aug; 27(8): 1887.

18. Bueno E.M., Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol. 2009; 5(12): 685- 697.

19. Connolly J.F., Guse R., Tiedeman J., Dehne R. Autologous marrow injection for delayed unions of the tibia: a preliminary report. J Orthop Trauma. 1989; 3(4): 276-282.

20. Hernigou P., Poignard A., Manicom O. et al.The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br. 2005; 87(7): 896-902.

21. Friedenstein A.J., Piatetzky-Shapiro I.I., Petrakova K.V.Osteogenesis in transplants of bone marrow cells. J EmbryolExpMorphol. 1966; 16(3): 381-390.

22. De Kok I.J., Peter S.J., Archambault M., et al. Investigation of allogeneicmesenchymal stem cell-based alveolar bone formation: preliminary findings. Clin Oral Implants Res. 2003; 14(4): 481-489.

23. Mankani M.H., Kuznetsov S.A., Fowler B. et al. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. BiotechnolBioeng. 2001; 72(1): 96-107.

24. Tsuchida H., Hashimoto J., Crawford E. et al.Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res. 2003; 21(1): 44-53.

25. Kon E., Muraglia A., Corsi A.et al.Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000 Mar 5; 49(3): 328-37.

26. Shang Q., Wang Z., Liu W.et al.Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg. 2001 Nov; 12(6): 586-93; discussion 594-5.

27. Mankani M.H., Kuznetsov S.A., Shannon B. et al.PG. Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol. 2006 Feb; 168(2): 542-50.

28. Liu G., Zhao L., Zhang W.et al.Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med. 2008 Jun; 19(6): 2367-76. Epub 2007 Dec 25.

29. Giannoni P., Mastrogiacomo M., Alini M. et al. Regeneration of large bone defects in sheep using bone marrow stromal cells. J Tissue EngRegen Med. 2008 Jul; 2(5): 253-62. doi: 10.1002/term.90.

30. Dumas A., Moreau M.F., Ghйrardi R.K. et al.Bone grafts cultured with bone marrow stromal cells for the repair of critical bone defects: an experimental study in mice. J Biomed Mater Res A. 2009 Sep 15; 90(4): 1218-29. doi: 10.1002/jbm.a.32176.

31. Xu J.Z., Qin H., Wang X.Q. et al.Repair of large segmental bone defects using bone marrow stromal cells with demineralized bone matrix. Orthop Surg. 2009 Feb; 1(1): 34-41. doi: 10.1111/j.2757-7861.2008.00007.x.

32. Nair M.B., Varma H.K., Menon K.V.et al.Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. ActaBiomater. 2009 Jun; 5(5): 1742-55. doi: 10.1016/j.actbio.2009.01.009. Epub 2009 Jan 21.

33. Chang S.C., Lin T.M., Chung H.Y.et al.Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein-2 genetransferred bone marrow stromal cells and composite biomaterials. Neurosurgery. 2009 Dec; 65(6 Suppl): 75-81; discussion 81-3. doi: 10.1227/01.NEU.0000345947.33730.91.

34. Chang S.C., Chung H.Y., Tai C.L. et al.Repair of large cranial defects by hBMP-2 expressing bone marrow stromal cells: comparison between alginate and collagen type I systems. J Biomed Mater Res A. 2010 Aug; 94(2): 433-41. doi: 10.1002/jbm.a.32685.

35. Xiao C., Zhou H., Ge S. et al.Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model. Int J Mol Med. 2010 Oct; 26(4): 517-25.

36. Zhou H., Deng Y., Bi X.et al.Orbital wall repair in canines with beta-tricalcium phosphate and induced bone marrow stromal cells. J Biomed Mater Res B ApplBiomater. 2013 Nov; 101(8): 1340-9. doi: 10.1002/jbm.b.32951. Epub 2013 May 17.

37. Gardel L., Afonso M., Frias C.et al.Assessing the repair of critical size bone defects performed in a goat tibia model using tissue-engineered constructs cultured in a bidirectional flow perfusion bioreactor. J Biomater Appl. 2014 Jan 9; 29(2): 172-185. [Epub ahead of print]

38. Fernandes M.B., Guimarres J.A., Casado P.L.et al.The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model. BMC Vet Res. 2014 Feb 5; 10: 36. doi: 10.1186/1746-6148-1036.

39. Ronca A., Guarino V., Raucci M.G.et al. Large defect-tailored composite scaffolds for in vivo bone regeneration. J Biomater Appl. 2014 Nov; 29(5): 715-27. doi: 10.1177/0885328214539823. Epub 2014 Jun 20.

40. Quarto R., Mastrogiacomo M., Cancedda R. et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001; 344(5): 385-386.

41. Marcacci M., Kon E., Moukhachev V., et al. Stem cells associated with macroporousbioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007; 13(5): 947-955.

42. Horwitz E.M., Prockop D.J., Fitzpatrick L.A. et al.Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesisimperfecta. Nat Med. 1999; 5(3): 309-313.

43. Tolar J., Nauta A.J., Osborn M.J. et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007; 25(2): 371- 379.

44. Tasso R., Augello A., Carida M. et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis. 2009; 30(1): 150- 157.

45. Pensak M., Hong S., Dukas A.et al.The role of transduced bone marrow cells overexpressing BMP-2 in healing criticalsized defects in a mouse femur. 2015 Jun; 22(6): 467-75. doi: 10.1038/gt.2015.14. Epub 2015 Mar 26.

46. Shakir S., MacIsaac Z.M., Naran S.et al.Transforming growth factor beta 1 augments calvarial defect healing and promotes suture regeneration. Tissue Eng Part A. 2015 Mar; 21(5-6): 939-47. doi: 10.1089/tenTEA.2014.0189. Epub 2015 Feb 6.

47. Kim I.G., Hwang M.P., Du P. et al.Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Biomaterials. 2015 May; 50: 75-86. doi: 10.1016/j.biomaterials.2015.01.054. Epub 2015 Feb 16.

48. Mesfin A., Buchowski J.M., Zebala L.P. et al.High-dose rhBMP-2 for adults: major and minor complications: a study of 502 spine cases. J Bone Joint Surg Am. 2013 Sep 4; 95(17): 1546-53. doi: 10.2106/JBJS.L.01730.

49. Moshel Y.A., Hernandez E.I., Kong L., et al.Acute renal insufficiency, supraventricular tachycardia, and confusion after recombinant human bone morphogenetic protein-2 implantation for lumbosacral spine fusion. J Neurosurg Spine. 2008 Jun; 8(6): 589-93. doi: 10.3171/SPI/2008/8/6/589.

50. Fu R., Selph S., McDonagh M.,et al.Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013 Jun 18; 158(12): 890-902. doi: 10.7326/00034819-158-12-201306180-00006.

51. Guo X., Zheng Q., Kulbatski I. et al. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Biomed Mater. 2006 Sep; 1(3): 93-9. doi: 10.1088/1748-6041/1/3/001. Epub 2006 Jun 5.

52. Maehara H., Sotome S., Yoshii T., et al.Repair of large osteochondral defects in rabbits using porous hydroxyapatite / collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res. 2010 May; 28(5): 677-86. doi: 10.1002/jor.21032.

53. Zhao L., Jiang S., Hantash B.M.Transforming growth factor 1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng. Part A 2010; 16: 725-733 [PubMed].

54. Kwok S., Partridge N.C., Srinivasan N. et al. Mitogen-activated protein kinase-dependent inhibition of osteocalcin gene expression by transforming growth factor-1. J. Cell. Biochem.2009; 106: 161-169 [PubMed]

55. Sun J.C., Hu Y., Zheng L.L. et al. Influence of healing process of extraction on related growth factors in microscrew-bone interface of implanted titanium microscrews near the extraction wounds. Sichuan Da XueXueBao Yi Xue Ban. 2015 Mar; 46(2): 222-7.

56. Zhang H., Ahmad M., Gronowicz G. Effects of transforming growth factor-1 (TGF-1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials 2003; 24: 2013- 2020 [PubMed]

57. Alliston T., Choy L., Ducy P.,et al. TGF--induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001; 20: 2254-2272 [PMC free article] [PubMed]

58. Kaji H., Naito J., Sowa H., Sugimoto T., Chihara K. Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm. Metab. Res. 2006; 38: 740-745 [PubMed]

59. Centrella M., Ji C., Casinghino S., McCarthy T.L. Rapid flux in transforming growth factor- receptors on bone cells. J. Biol. Chem. 1996; 271: 18616-18622. [PubMed]

60. Weaver C.T., Harrington L.E., Mangan P.R. et al. Th17. An effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24: 677-688. [PubMed]

61. Ochiai H., Yamamoto Y., Yokoyama A.,et al. Dual nature of TGF-1 in osteoblastic differentiation of human periodontal ligament cells. J. Hard Tissue Biol. 2010; 19: 187-1.

62. Ochiai H., Okada S., Saito A.,et al. Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-1 (TGF-1) administration suppresses osteoblast differentiation. J Biol Chem. 2012 Jun 29; 287(27): 22654-61. doi: 10.1074/jbc.M111.279091. Epub 2012 May 9.

63. Lau K.H., Kapur S., Kesavan C. et al. Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J BiolChem 2006; 281: 9576-88.

64. Lean J.M., Mackay A.G., Chow J.W. et al.Osteocytic expression of mRNA for c-fos and IGF-I: an immediate early gene response to an osteogenic stimulus. Am J Physiol 1996; 270: E937-45.

65. Kawata A., Mikuni-Takagaki Y.Mechanotransduction in stretched osteocytes--temporal expression of immediate early and other genes. BiochemBiophys Res Commun 1998; 246: 404-8.

66. Reijnders C.M., Bravenboer N., Tromp A.M., et al. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol 2007; 192: 131-40.

67. Sakata T., Halloran B.P., Elalieh H.Z. et al. Skeletal unloading induces resistance to insulin-like growth factor I on bone formation. Bone 2003; 32: 669-80.

68. Sakata T., Wang Y., Halloran B.P. et al. Skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) by inhibiting activation of the IGF-I signaling pathways. J Bone Miner Res 2004; 19: 436-46.

69. Kesavan C., Wergedal J.E., Lau K.H. et al. Conditional disruption of IGF-I gene in type 1alpha collagen-expressing cells shows an essential role of IGF-I in skeletal anabolic response to loading. Am J Physiol Endocrinol Metab 2011; 301: E1191-7.

70. Sheng M.H., Lau K.H., Baylink D.J. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone. J Bone Metab. 2014 Feb; 21(1): 41-54. doi: 10.11005/ jbm.2014.21.1.41. Epub 2014 Feb 28.

71. Geiger F., Lorenz H., Xu W.,et al.VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone. 2007 Oct; 41(4): 516-22. Epub 2007 Jul 6.

72. Wernike E., Montjovent M.O., Liu Y. et al. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater 2010; 19: 30-40.

73. Maes C.,Coenegrachts L.,Stockmans I. et al.Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J. Clin. Invest.2006; 116: 1230-1242. doi: 10.1172/JCI26772.

74. Mccoy R.,Widaa A.,Watters K.,et al.Orchestrating Osteogenic Differentiation of Mesenchymal Stem Cells-Identification of Placental Growth Factor as a Mechanosensitive Gene with a Pro-Osteogenic Role. STEM CELLS EXPRESS July 29, 2013. VC AlphaMed Press 1066-5099/2013 doi: 10.1002/ stem.1482

75. Neuss S., Becher E., WЁoltje M.,et al.Functional expression of HGF and HGF receptor/cmet in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells2004; 22: 3: 405-414.

76. Vogel S., Trapp T., Borger V. et al.Hepatocyte growth factormediated attraction of mesenchymal stem cells for apoptotic neuronal and cardiomyocytic cells. Cellular and Molecular Life Sciences 2010; 67: 2: 295-303.

77. Ibault M.M., Hoemann C.D., Buschmann M.D. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells and Development2007; 16: 3: 489-502.

78. Van de Kamp J., Jahnen-Dechent W., Rath B.,et al.Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment. Stem Cells Int. 2013; 2013: 892065. doi: 10.1155/2013/892065. Epub 2013 Jun 18.

79. Kolar P., Gaber T., Perka C.,et al. Human early fracture hematoma is characterized by inflammation and hypoxia. ClinOrthopRelat Res 2011; 469: 3118-3126.

80. Mountziaris P.M., Spicer P.P., Kasper F.K., Mikos A.G.Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 2011; 17: 393-402.

81. Simon A.M., Manigrasso M.B., O’Connor J.P. Cyclooxygenase 2 function is essential for bone fracture healing. J Bone Miner Res 2002; 17: 963-976

82. Gracie J.A., Robertson S.E., McInnes I.B. Interleukin-18. J LeukocBiol2003; 73: 213-224.

83. Sonomoto K., Yamaoka K., Oshita K.,et al. Interleukin-1 induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinaselike orphan receptor 2 pathway. Arthritis Rheum. 2012 Oct; 64(10): 3355-63. doi: 10.1002/art.34555.

84. Czekanska E.M., Ralphs J.R., Alini M., Stoddart M.J. Enhancing inflammatory and chemotactic signals to regulate bone regeneration. Eur Cell Mater. 2014 Oct 23; 28: 320-34.

85. Fleisch H., Russell R. G., Straumann F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 1966; 212: 901-903 [PubMed]

86. Hessle L., Johnson K. A., Anderson H.C.,et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 9445- 9449 [PMC free article] [PubMed]

87. Johnson K., Terkeltaub R. Inorganic pyrophosphate (PPi) in pathologic calcification of articular cartilage. Front. Biosci. 2005; 10: 988-997 [PubMed]

88. Ferreira E., Porter R.M., Wehling N.,et al. Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem. 2013 Oct 11; 288(41): 29494-505. doi: 10.1074/jbc.M113.471268. Epub 2013 Aug 22.

89. Lange J., Sapozhnikova A., Lu C.,et al.Action of IL-1beta during fracture healing. J Orthop Res. 2010 Jun; 28(6): 778-84. doi: 10.1002/jor.21061.

90. Lee Y.M., Fujikado N., Manaka H.,et al. IL-1 plays an important role in the bone metabolism under physiological conditions. IntImmunol. 2010 Oct; 22(10): 805-16. doi: 10.1093/ intimm/dxq431. Epub 2010 Aug 2.

91. Sims N.A., Walsh N.C. GP130 cytokines and bone remodeling in health and disease. BMB Rep. 2010; 43: 513-523.

92. Yoshitake F., Itoh S., Narita H., et al.Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem. 2008 Apr 25; 283(17): 11535-40. doi: 10.1074/jbc.M607999200. Epub 2008 Feb 22.

93. Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect 2009; 11: 625-30. doi: 10.1016/j.micinf.2009.04.003

94. Koenders M.I., Marijnissen R.J., Devesa I.et al.Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin1beta, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis. Arthritis Rheum 2011; 63: 2329-39. doi: 10.1002/art.30418

95. Kotake S., Udagawa N., Takahashi N.,et al.IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest (1999) 103: 1345-52. doi: 10.1172/JCI5703

96. Lubberts E., Joosten L.A., van de Loo F.A., et al.Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction

97. Marupanthorn K., Tantrawatpan C., Tantikanlayaporn D.,et al.The Effects of TNF- on Osteogenic Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells. J Med Assoc Thai. 2015 Apr; 98Suppl 3: S34-40.

98. Carter S., Braem K., Lories R.J. The role of bone morphogenetic proteins in ankylosing spondylitis. TherAdvMusculoskeletDis 2012; 4: 293-9. doi: 10.1177/1759720X12444175

99. Tyagi A.M., Srivastava K., Mansoori M.N. et al.Estrogen Deficiency Induces the Differentiation of IL-17 Secreting Th17 Cells: A New Candidate in the Pathogenesis of Osteoporosis PLoS One. 2012; 7(9): e44552. doi: 10.1371/ journal.pone.0044552. Epub 2012 Sep 10.

100. Yago T., Nanke Y., Kawamoto M.,et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther. 2007; 9(5): R96.

101. Kotake S., Nanke Y., Mogi M.,et al. IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol. 2005 Nov; 35(11): 3353-63.

102. Takayanagi H., Ogasawara K., Hida S.,et al.T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000 Nov 30; 408(6812): 600-5.

103. Park H., Li Z., Yang X.O.,et al.A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005, 6: 1133-1141.

104. Chen Z., Buki K., Vддrдniemi J.,et al.The critical role of IL-34 in osteoclastogenesis. PLoS One. 2011 Apr 8; 6(4): e18689. doi: 10.1371/journal.pone.0018689.

105. Yu Y., Yang D., Qiu L.,et al. Tumor necrosis factor- induces interleukin-34 expression through nuclear factor-B activation in MC3T3-E1 osteoblastic cells. Mol Med Rep. 2014 Sep; 10(3): 1371-6. doi: 10.3892/mmr.2014.2353. Epub 2014 Jun 25.

106. Hsu Y.H., Chen W.Y., Chan C.H.,et al.Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med. 2011 Aug 29; 208(9): 1849-61. doi: 10.1084/jem.20102234. Epub 2011 Aug 15.

107. Yamada A., Takami M., Kawawa T., et al. Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology. 2007 Apr; 120(4): 573-9.

108. Kodama Y., Takeuchi Y., Suzawa M.,et al.Reduced expression of interleukin-11 in bone marrow stromal cells of senescenceaccelerated mice (SAMP6): relationship to osteopeniawith enhanced adipogenesis. J Bone Miner Res 1998; 13: 1370-1377.

109. Keller D.C., Du X.X., Srour E.F.et al.Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures. Blood 1993; 82: 1428-1435.

110. Du X., Williams D.A. Interleukin-11: review of molecular, cell biology, and clinical use. Blood 1997; 89: 3897-3908.

111. Kawashima I., Ohsumi J., Mita-Honjo K.,et al.Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS Lett1991; 283: 199-202.

112. Girasole G., Passeri G., Jilka R.L., Manolagas S.C.Interleukin-11: a new cytokine critical for osteoclast development. J Clin Invest 1994; 93: 1516-1524.

113. Takeuchi Y., Watanabe S., Ishii G.,et al. Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J BiolChem2002; 277: 49011-49018.

114. Burr D.B., Robling A.G., Turner C.H. Effects of biomechanical stress on bones in animals. 2002; Bone 30: 781-786.

115. Knothe Tate M.L.Whither flows the fluid in bone?An osteocyte’s perspective. J Biomech2003; 36: 1409-1424.

116. Jaworski Z.F., Liskova-Kiar M., Uhthoff H.K.Effect of longterm immobilisation on the pattern of bone loss in older dogs. J Bone Joint Surg1980; Br 62-B: 104-110.

117. Morey E.R., Baylink D. J.Inhibition of bone formation during space flight. Science 1978; 201: 138-1141.

118. Kodama Y., Nakayama K., Fuse H., et al. Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidlygrowing rats. J Bone Miner Res 1997; 12: 1058-1067.

119. Robling A.G., Castillo A.B., Turner C.H.Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng2006; 8: 455-498.


Для цитирования:


Булкин А.А., Боков А.Е., Олейник А.Я., Млявых С.Г. Применение регенеративных и остеоиндуктивных технологий в практической медицине. Нейрохирургия. 2017;(2):88-95.

For citation:


Bulkin A.A., Bokov A.E., Oleinik A.Y., Mlyavykh S.G. The regenerative and osseoinductive technologies in applied medicine. Russian journal of neurosurgery. 2017;(2):88-95. (In Russ.)

Просмотров: 121


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)