Phenomenon of cortical neuroplasticity in humans
https://doi.org/10.63769/1683-3295-2025-27-2-142-153
Abstract
Background. Neuroplasticity of the brain cortex is a unique phenomenon. It has both scientific and clinical significance for neurology and neurosurgery.
Aim. The aim of this study is to analyze literature data on human brain neuroplasticity in various diseases and describe factors affecting it. Materials and methods. Analysis of literature presented in the PubMed database was performed using searches for words “neuroplasticity”, “cortical plasticity” and “glioma surgery”. Several clinical cases from the authors’ practice are used as illustrations.
Results. Based on literature data, the article presents the main types of neuroplasticity depending on: type of pathological process; location of cortical zones participating in neuroplasticity formation; level of compensation of lost brain function; time of phenomenon development; rate of pathological process development. The special role of preservation of white matter tracts in neuroplasticity is highlighted. Clinical significance of this phenomenon for neurosurgery is demonstrated using the example of intracerebral tumors located in functionally important parts of the brain.
Conclusion. Neuroplasticity of the brain cortex is predominantly characteristic of “slow” pathological processes such as low-grade gliomas in contrast to “fast” processes (such as malignant tumors, injuries, strokes). Language areas of the cortex are more susceptible to plasticity than motor cortex (except the supplementary motor cortex). Areas neighboring the lesion, as well as distant areas including the contralateral hemisphere, can contribute to compensation mechanisms. Phenomenon of neuroplasticity helps to compensate functions of the affected cortex both during disease progression and multistage neurosurgical interventions. Transcranial magnetic stimulation is a promising technique for managing neuroplasticity in tumors and other types of brain diseases.
About the Authors
S. A. GoryaynovRussian Federation
Sergey Alekseevich Goryajnov
10 Marshala Zhukova St., Obninsk 249031
28 Krupskoy St., Smolensk 214019
S. B. Buklina
Russian Federation
16 4-ya Tverskaya-Yamskaya St., Moscow 125047
1 Ostrovityanova St., Moscow 117513
N. N. Maslova
Russian Federation
28 Krupskoy St., Smolensk 214019
N. V. Yur’eva
Russian Federation
28 Krupskoy St., Smolensk 214019
A. I. Batalov
Russian Federation
16 4-ya Tverskaya-Yamskaya St., Moscow 125047
V. Yu. Zhukov
Russian Federation
16 4-ya Tverskaya-Yamskaya St., Moscow 125047
E. V. Aleksandrova
Russian Federation
16 4-ya Tverskaya-Yamskaya St., Moscow 125047
D. V. Gusev
Russian Federation
1 Ostrovityanova St., Moscow 117513
N. E. Zakharova
Russian Federation
16 4-ya Tverskaya-Yamskaya St., Moscow 125047
I. N. Pronin
Russian Federation
16 4-ya Tverskaya-Yamskaya St., Moscow 125047
References
1. Cargnelutti E., Ius T., Skrap M., Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. Neuroimage Clin 2020;28:102435. DOI: 10.1016/j.nicl.2020.102435
2. Uddin L.Q. Stability and plasticity of functional brain networks after hemispherectomy: implications for consciousness research. Quant Imaging Med Surg 2020;10(6):1408–12. DOI: 10.21037/qims-20-554
3. Jannati A., Oberman L.M., Rotenberg A., Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacol 2023;48(1):191–208. DOI: 10.1038/s41386-022-01453-8
4. Duffau H. Diffuse low-grade gliomas and neuroplasticity. Diagn Interv Imaging 2014;95(10):945–55. DOI: 10.1016/j.diii.2014.08.001
5. Duffau H. Functional mapping before and after low-grade glioma surgery: a new way to decipher various spatiotemporal patterns of individual neuroplastic potential in brain tumor patients. Cancers (Basel) 2020;12(9):2611. DOI: 10.3390/cancers12092611
6. Barcia J.A., Sanz A., Balugo P. et al. High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca’s area. Neuroreport 2012;23(5):304–9. DOI: 10.1097/WNR.0b013e3283513307
7. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 2005;4(8):476–86. DOI: 10.1016/S1474-4422(05)70140-X
8. Kessels R., Eling P., Ponds R. et al. Klinische neuropsychologie. Amsterdam: Boom. 2012. ISBN (Print): 978-94-6105-444-9.
9. Young A.L., Bocchetta M., Russell L.L. et al. Characterizing the clinical features and atrophy patterns of MAPT-related frontotemporal dementia with disease progression modeling. Neurology 2021;97(9):e941–52. DOI: 10.1212/WNL.0000000000012410
10. Alekseev I.M., Zuev A.A. Surgical treatment of tumors of the supplementary motor area. Neyrokhirurgiya = Russian Journal of Neurosurgery 2022;24(3):90–9. (In Russ.). DOI: 10.17650/1683-3295-2022-24-3-90-99
11. Benzagmout M., Gatignol P., Duffau H. Resection of World Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery 2007;61(4):741–53. DOI: 10.1227/01.NEU.0000298902.69473.77
12. Lubrano V., Draper L., Roux F.E. What makes surgical tumor resection feasible in Broca’s area? Insights into intraoperative brain mapping. Neurosurgery 2010;66(5):868–75. DOI: 10.1227/01.NEU.0000368442.92290.04.00
13. Thiel A., Habedank B., Herholz K. et al. From the left to the right: how the brain compensates progressive loss of language function. Brain Lang 2006;98(1):57–65. DOI: 10.1016/j.bandl.2006.01.007
14. Thiel A., Habedank B., Winhuisen L. et al. Essential language function of the right hemisphere in brain tumor patients. Ann Neurol 2005;57(1):128e131. DOI: 10.1002/ana.20342
15. Thiel A., Herholz K., Koyuncu A. et al. Plasticity of language networks in patients with brain tumors: a positron emission tomography activation study. Ann Neurol 2001;50(5):620–9. DOI: 10.1002/ana.1253
16. Ille S., Engel L., Albers L. et al. Functional reorganization of cortical language function in glioma patients – a preliminary study. Front Oncol 2019;9:446. DOI: 10.3389/fonc.2019.00446
17. Robles S.G., Gatignol P., Lehéricy S., Duffau H. Long-term brain plasticity allowing a multistage surgical approach to World Health Organization Grade II gliomas in eloquent areas. J Neurosurg 2008;109(4):615–24. DOI: 10.3171/JNS/2008/109/10/0615
18. De Benedictis A., Sarubbo S., Duffau H. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation. J Neurosurg 2012;117(6):1053–69. DOI: 10.3171/2012.7.JNS12628
19. Duffau H. Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006;13(9):885–97. DOI: 10.1016/j.jocn.2005.11.045
20. Traut T., Sardesh N., Bulubas L. et al. MEG imaging of recurrent gliomas reveals functional plasticity of hemispheric language specialization. Hum Brain Mapp 2019;40(4):1082–92. DOI: 10.1002/hbm.24430
21. Buklina S.B., Batalov A.I., Smirnov A.S. et al. dynamics of functional MRI and speech function in patients after resection of frontal and temporal lobe tumors. Voprosy neyrokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2017;(3):17–29. (In Russ.). DOI: 10.17116/neiro201781317-29
22. Buklina S.B., Batalov A.I., Fadeeva T.M. et al. The structure of activation of speech zones in patients with intracerebral tumors according to functional magnetic resonance imaging in comparison with tumor localization and functional asymmetry profile. Voprosy neyrokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2015;79(3):60–8. (In Russ.). DOI: 10.17116/neiro201579360-68
23. Turkeltaub P.E., Eickhoff S.B., Laird A.R. et al. Minimizing withinexperiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum Brain Mapp 2012;33(1):1–13. DOI: 10.1002/hbm.21186
24. Herbet G., Maheu M., Costi E. et al. Mapping neuroplastic potential in brain-damaged patients. Brain 2016;139(3):829–44. DOI: 10.1093/brain/awv394
25. Tate M.C., Herbet G., Moritz-Gasser S. et al. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 2014;137(Pt 10):2773–82. DOI: 10.1093/brain/awu168
26. Sarubbo S., Le Bars E., Moritz-Gasser S., Duffau H. Complete recovery after surgical resection of left Wernicke’s area in awake patient: a brain stimulation and functional MRI study. Neurosurg Rev 2012;35(2):287–92. DOI: 10.1007/s10143-011-0351-4
27. Duffau H., Sichez J.P., Lehéricy S. Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma. Evidence using direct cortical stimulations. Ann Neurol 2000;47(1):132–5. PMID: 10632114.
28. Duffau H. Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping J Neurol Neurosurg Psychiatry 2001;70(4):506–13. DOI: 10.1136/jnnp.70.4.506
29. Duffau H., Denvil D., Capelle L. Long-term reshaping of language, sensory and motor maps following glioma resection: a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry 2002;72(4):511–6. DOI: 10.1136/jnnp.72.4.511
30. Krainik A., Lehéricy S., Duffau H. et al. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 2003;60(4):587–94. DOI: 10.1212/01.wnl.0000048206.07837.59
31. Krainik A., Duffau H., Capelle L. et al. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 2004;62(8):1323–32. DOI: 10.1212/01.wnl.0000120547.83482.b1
32. Rech F., Herbet G., Moritz-Gasser S., Duffau H. Disruption of bimanual movement by unilateral subcortical electrostimulation. Hum Brain Mapp 2014;35(7):3439–45. DOI: 10.1002/hbm.22413
33. Desmurget M., Bonnetblanc F., Duffau H. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain 2007;130(Pt 4):898–914. DOI: 10.1093/brain/awl300
34. Desmurget M., Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci 2009;13(10):411–9. DOI: 10.1016/j.tics.2009.08.001
35. Zhukov V.Yu., Goryainov S.A., Buklina S.B. et al. Mapping of cortical speech zones and arcuate tract in patients with gliomas of temporal lobe of left hemisphere (analysis of a series of 27 observations). Neyrokhirurgiya = Russian Journal of Neurosurgery 2023;25(1):53–61. (In Russ.). DOI: 10.17650/1683-3295-2023-25-1-53-61
36. Idu A.A., Bogaciu N.S., Ciurea A.V. Brain imaging and morphological plasticity in glioblastoma: a literature review. J Med Life 2023;16(3):344–7. DOI: 10.25122/jml-2022-0201
37. Duffau H. Can non-invasive brain stimulation be considered to facilitate reoperation for low-grade glioma relapse by eliciting neuroplasticity? Front Neurol 2020;11:582489. DOI: 10.3389/fneur.2020.582489
38. De Almeida C.C., Neville I.S., Hayashi C.Y. et al. Quantification of tumor induced motor cortical plasticity using navigated transcranial magnetic stimulation in patients with adult-type diffuse gliomas. Front Neurosci 2023;17:1143072. DOI: 10.3389/fnins.2023.1143072
39. Hamilton R.H., Chrysikou E.G., Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang 2011;118(1–2):40–50. DOI: 10.1016/j.bandl.2011.02.005
40. Barwood C.H., Murdoch B.E., Whelan B.M. et al. The effects of low frequency repetitive transcranial magnetic stimulation (rTMS) and sham condition rTMS on behavioural language in chronic non-fluent aphasia: short term outcomes. NeuroRehabilitation 2011;28(2):113–28. DOI: 10.3233/NRE-2011-0640
41. Mosca C., Zoubrinetzy R., Baciub M. et al. Rehabilitation of verbal memory by means of preserved nonverbal memory abilities after epilepsy surgery. Epilepsy Behav Case Rep 2014;2:167–73. DOI: 10.1016/j.ebcr.2014.09.002
42. Coget A., Deverdun J., Bonafé A. et al. Transient immediate postoperative homotopic functional disconnectivity in low-grade glioma patients. Neuroimage Clin 2018;18:656–62. DOI: 10.1016/j.nicl.2018.02.023
43. Duffau H. Can non-invasive brain stimulation be considered to facilitate reoperation for low-grade glioma relapse by eliciting neuroplasticity? Front Neurol 2020;11:582489. DOI: 10.3389/fneur.2020.582489
44. Krishna S., Kakaizada S., Almeida N. et al. Central nervous system plasticity influences language and cognitive recovery in adult glioma. Neurosurgery 2021;89(4):539–48. DOI: 10.1093/neuros/nyaa456
45. Pasquini L., Peck K.K., Tao A. et al. Longitudinal evaluation of brain plasticity in low-grade gliomas: fmri and graph-theory provide insights on language reorganization. Cancers (Basel) 2023;15(3):836. DOI: 10.3390/cancers15030836
46. Swanson K.R., Bridge C., Murray J.D., Alvord E.C. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 2003;216(1):1–10. DOI: 10.1016/j.jns.2003.06.001
47. Bullmore E., Sporns O. The economy of brain network organization. Nat Rev Neurosci 2012 Apr 13;13(5):336–49. DOI: 10.1038/nrn3214
48. Sam N., Duffau H. Brain plasticity profiling as a key support to therapeutic decision-making in low-grade glioma oncological strategies. Cancers (Basel) 2023;15(14):3698. DOI: 10.3390/cancers15143698
49. Herbet G., Duffau H. Revisiting the functional anatomy of the human brain: toward a meta-networking theory of cerebral functions. Physiol Rev 2020;100(3):1181–228. DOI: 10.1152/physrev.00033.2019
50. Ille S., Kelm A., Schroeder A. et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients – a randomized, doubleblinded trial. Brain Stimul 2021;14(4):780–7. DOI: 10.1016/j.brs.2021.04.026
Review
For citations:
Goryaynov S.A., Buklina S.B., Maslova N.N., Yur’eva N.V., Batalov A.I., Zhukov V.Yu., Aleksandrova E.V., Gusev D.V., Zakharova N.E., Pronin I.N. Phenomenon of cortical neuroplasticity in humans. Russian journal of neurosurgery. 2025;27(2):142-153. (In Russ.) https://doi.org/10.63769/1683-3295-2025-27-2-142-153