Preview

Russian journal of neurosurgery

Advanced search

Alternative middle-flow extracranial-intracranial cerebral bypass using distal branches of the external carotid artery in patients with complex cerebral aneurysms (clinical cases and literature review)

https://doi.org/10.63769/1683-3295-2025-27-2-100-112

Abstract

Background. The treatment of complex cerebral aneurysms is still remained the great challenge for neurosurgeons. There is a large choice of intravascular techniques for excluding the complex cerebral aneurysms from the blood flow: endovascular embolization with microcoils, usage of flow-diverting stents, balloon angioplasty and stenting of extra- and intracranial segments of the main cerebral arteries. At the same time, the microsurgical treatment of cerebral aneurysms has not lost its relevance and remains the most radical method of treatment. However, simple clipping or reconstruction of complex aneurysm wall is not always possible. In such cases, trapping of parent artery and revascularization of the required blood supply territory are used.

Aim. To present the two clinical cases of patients with complex intracranial aneurysms without the possibility of endovascular treatment, who underwent parent artery trapping and alternative middle flow extracranial-intracranial (EC–IC) bypass as well as to conduct the literature review concerning the key aspects of this topic.

Clinical cases. This article presents two patients operated on for complex intracranial aneurysms. The first patient had a complex fusiformsaccular aneurysm of the left middle cerebral artery (MCA) with a frontal M2 segment of the left MCA extending from the fusiform dome; the second patient had a giant saccular aneurysm of the supraclinoid segment of the left internal carotid artery (ICA) and a complete posterior trifurcation on the left. Endovascular treatment was considered as impossible. The trapping of the parent artery and performing of middle-flow EC–IC bypass using the distal branches of the external carotid artery (ECA) were conducted. Intraoperative frameless neuronavigation was used. Conclusion. The use of terminal branches of the ECA (maxillary artery and proximal part of superficial temporal artery) expands the possibilities of cerebral revascularization performing in cases where low- or middle-flow EC–IC bypasses are required. The relatively rare use of these arteries in practice and few publications about these types of bypasses require careful selection of patients with preoperative assessment of the brachiocephalic arteries and hemodynamic parameters.

About the Authors

V. A. Lukyanchikov
Research Center of Neurology; N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department; The Russian National Research Medical University named after N. I. Pirogov
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367

3 Bolshaya Sukharevskaya Sq., Moscow 129090

1 Ostrovityanova St., Moscow 117997



T. A. Shatokhin
Research Center of Neurology; N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department; The Russian National Research Medical University named after N. I. Pirogov
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367

3 Bolshaya Sukharevskaya Sq., Moscow 129090

1 Ostrovityanova St., Moscow 117997



E. D. Grigorevskii
Research Center of Neurology; N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department
Russian Federation

Evgenii Dmitrievich Grigorevskii

80 Volokolamskoe Hwy, Moscow 125367

3 Bolshaya Sukharevskaya Sq., Moscow 129090



M. S. Staroverov
The Russian National Research Medical University named after N. I. Pirogov; Federal Brain and Neurotechnology Center, Federal Medical and Biological Agency of Russia
Russian Federation

1 Ostrovityanova St., Moscow 117997

Bld. 10, 1 Ostrovityanova St., Moscow 117513



I. M. Shetova
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



Z. A. Kulov
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



N. A. Suponeva
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



M. Yu. Maksimova
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



Yu. V. Ryabinkina
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



R. V. Polishchuk
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



E. A. Golovneva
Research Center of Neurology
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367



A. A. Kosolapov
State budget institution of the Ryazan region Regional Clinical Hospital
Russian Federation

3а Internatsionalnaya St., Ryazan 390039



N. A. Starikov
State budget institution of the Ryazan region Regional Clinical Hospital
Russian Federation

3а Internatsionalnaya St., Ryazan 390039



V. V. Krylov
Research Center of Neurology; N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department; The Russian National Research Medical University named after N. I. Pirogov
Russian Federation

80 Volokolamskoe Hwy, Moscow 125367

3 Bolshaya Sukharevskaya Sq., Moscow 129090

1 Ostrovityanova St., Moscow 117997



References

1. Mooney M.A., Simon E.D., Brigeman S. et al. Long-term results of middle cerebral artery aneurysm clipping in the Barrow Ruptured Aneurysm Trial. J Neurosurg 2019;130(3):895–901. DOI: 10.3171/2017.10.JNS172183

2. Shatohin T.A., Belokon O.S., Eliseev V.V. et al. A comparative assessment of the results of the treatment of patients with a rupture of cerebral aneurysm in the acute period of subarachnoid hemorrhage with endovascular and microsurgical methods (continued Russian study of aneurysm surgery). Rossiiskii neirokhirurgicheskii zhurnal imeni professora A.L. Polenova = Russian neurosurgical journal named after professor A.L. Polenov 2023;15(3):134–44. (In Russ.). DOI: 10.56618/2071-2693_2023_15_3_134

3. Krylov V.V, Lukyanchikov V.A., Polunina N.A. Surgical revascularization of brain. Moscow: Priz, 2023. 380 p. (In Russ.).

4. Lawton M.T., Lang M.J. The future of open vascular neurosurgery: perspectives on cavernous malformations, AVMs, and bypasses for complex aneurysms. J Neurosurg 2019;130(5):1409–25. DOI: 10.3171/2019.1.JNS182156

5. Wessels L., Hecht N., Vajkoczy P. Bypass in neurosurgery— indications and techniques. Neurosurg Rev 2019;42(2):389–93. DOI: 10.1007/s10143-018-0966-9

6. Krylov V.V., Polunina N.A. Surgery of complex cerebral aneurysms. Ed. by V.V. Krylov. Moscow: ABV-press, 2019. (In Russ.).

7. Abla A.A., Lawton M.T. The superficial temporal artery trunk-toM2 middle cerebral artery bypass with short radial artery interposition graft: The forgotten bypass. World Neurosurg 2015;83(2):145–6. DOI: 10.1016/j.wneu.2014.08.027

8. Alaraj A., Ashley W.W., Charbel F.T., Amin-Hanjani S. The superficial temporal artery trunk as a donor vessel in cerebral revascularization: Benefits and pitfalls. Neurosurg Focus 2008;24(2):E7. DOI: 10.3171/FOC/2008/24/2/E7

9. Kaku Y., Funatsu N., Tsujimoto M. et al. STA-MCA/STA-PCA bypass using short interposition vein graft. Acta Neurochir Suppl 2014;119:79–82. DOI: 10.1007/978-3-319-02411-0_14

10. Kaku Y., Takei H., Miyai M. et al. Surgical treatment of complex cerebral aneurysms using interposition short vein graft. Acta Neurochir Suppl 2016;123:65–71. DOI: 10.1007/978-3-319-29887-0_9

11. Little J.R., Furlan A.J., Bryerton B. Short vein grafts for cerebral revascularization. J Neurosurg 1983;59(3):384–8. DOI: 10.3171/jns.1983.59.3.0384

12. Yang K., Ahn J.S., Park J.C. et al. The efficacy of bypass surgery using a short interposition graft for the treatment of intracranial complex aneurysm. World Neurosurg 2015;83(2):197–202. DOI: 10.1016/j.wneu.2014.06.008

13. Aso K., Ogasawara K., Kobayashi M., Yoshida K. Arterial bypass surgery using a spontaneously formed “bonnet” superficial temporal artery in a patient with symptomatic common carotid artery occlusion: Case report. Operative Neurosurgery 2010;67(3):onsE316–7. DOI: 10.1227/01.NEU.0000383877.00075.B4

14. Deshmukh V.R., Porter R.W., Spetzler R.F. Use of “bonnet” bypass with radial artery interposition graft in a patient with recurrent cranial base carcinoma: Technical report of two cases and review of the literature. Neurosurgery 2005;56(suppl_1):E202. DOI: 10.1227/01.NEU.0000144492.42325.34

15. Garrido E., Freed M.H. Fatal complication of the “bonnet bypass”: Case report. Neurosurgery 1983;13(3):320–1. DOI: 10.1097/00006123-198309000-00020

16. Krylov V.V., Lukyanchikov V.A., Dalibaldyan V.A. et al. Use of the “bonnet” bypass in treating a patient with symptomatic occlusion of the ipsilateral carotid arteries. Clinical observation. Zh Vopr Neirokhir 2019;83(4):64–73. DOI: 10.17116/neiro20198304164

17. Lukyanchikov V.А., Staroverov M.S. “Bonnet” bypass in brain revascularisation. Neyrokhirurgiya = Russian Journal of Neurosurgery 2019;21(2):85–93. (In Russ.). DOI: 10.17650/1683-3295-2019-21-2-85-93

18. Nagm A., Horiuchi T., Hasegawa T., Hongo K. Intraoperative evaluation of reverse bypass using a naturally formed “bonnet” superficial temporal artery: Technical note. World Neurosurg 2016;88:603–8. DOI: 10.1016/j.wneu.2015.10.087

19. Otani N., Wada K., Sakakibara F. et al. “Reverse” bypass using a naturally formed “bonnet” superficial temporal artery in symptomatic common carotid artery occlusion: A case report. Neurol Med Chir (Tokyo) 2014;54(10):851–3. DOI: 10.2176/nmc.cr.2013-0214

20. Sanada Y., Kamiyama H., Iwaisako K. et al. “Bonnet” bypass to proximal trunk of middle cerebral artery with a radial artery interposition graft: Technical note. Minim Invasive Neurosurg 2010;53(04):203–6. DOI: 10.1055/s-0030-1263109

21. Spetzler R.F., Roski R.A., Rhodes R.S., Modic M.T. The “bonnet bypass”: Case report. J Neurosurg 1980;53(5):707–9. DOI: 10.3171/jns.1980.53.5.0707

22. Zumofen D., Khan N., Roth P. et al. Bonnet bypass in multiple cerebrovascular occlusive disease. Acta Neurochir Suppl 2008;103:103–7. DOI: 10.1007/978-3-211-76589-0_18

23. Kim K., Mizunari T., Mizutani N. et al. Giant intracranial aneurysm of the anterior communicating artery treated by direct surgery using A3–A3 side-to-side anastomosis and A3-RA graftSTA anastomosis. Acta Neurochir (Wien) 2006;148(3):353–7. DOI: 10.1007/s00701-005-0685-1

24. Lukyanchikov V.A., Senko I.V., Polunina N.A. et al. Resection of a giant fusiform aneurysm of the pericallosal artery with “hemibonnet” bypass procedure (case report and literature review). Zh Vopr Neirokhir 2020;84(3):88–95. DOI: 10.17116/neiro20208403188

25. Wada K., Otani N., Toyooka T. et al. Superficial temporal artery to anterior cerebral artery hemi-bonnet bypass using radial artery graft for prevention of complications after surgical treatment of partially thrombosed large/giant anterior cerebral artery aneurysm. J Stroke Cerebrovasc Dis 2018;27(12):3505–10. DOI: 10.1016/j.jstrokecerebrovasdis.2018.08.020

26. Abdulrauf S.I., Sweeney J.M., Mohan Y.S., Palejwala S.K. Short segment internal maxillary artery to middle cerebral artery bypass: A novel technique for extracranial-to-intracranial bypass. Neurosurgery 2011;68(3):804–9. DOI: 10.1227/NEU.0b013e3182093355

27. Akiyama O., Güngör A., Middlebrooks E.H. et al. Microsurgical anatomy of the maxillary artery for extracranial-intracranial bypass in the pterygopalatine segment of the maxillary artery: MA for the EC-IC bypass. Clin Anat 2018;31(5):724–33. DOI: 10.1002/ca.22926

28. Shi X., Qian H., K.I. Singh K.C., et al. Bypass of the maxillary to proximal middle cerebral artery or proximal posterior cerebral artery with radial artery graft. Acta Neurochir 2011;153(8):1649–55. DOI: 10.1007/s00701-011-1070-x

29. Meybodi T.A., Lawton M.T., Rubio R.R. et al. Internal maxillary artery to upper posterior circulation bypass using a superficial temporal artery graft: Surgical anatomy and feasibility assessment. World Neurosurg 2017;107:314–21. DOI: 10.1016/j.wneu.2017.07.158

30. Li X., Orscelik A., Vigo V. et al. Microsurgical techniques for exposing the internal maxillary artery in cerebral revascularization surgery: A Comparative Cadaver Study. World Neurosurg 2020;143:e232–42. DOI: 10.1016/j.wneu.2020.07.112

31. Peto I., Nouri M., Agazzi S. et al. Pterygo-maxillary fissure as a landmark for localization of internal maxillary artery for use in extracranial-intracranial bypass. Operative Neurosurg 2020;19(5):E480–6. DOI: 10.1093/ons/opaa177

32. Krylov V.V., Lukyanchikov V.A., Shatokhin T.A. et al. A method for performing the cerebral extra-intracranial bypass using the maxillary artery orifice (“end-to-end” anastomosis). Patent No. RU 2781443 C1 from 12.10.2022. (In Russ.). https://www.elibrary.ru/zjnqxc

33. Zhang F., Tang F., Wang C., Feng Y. ROC curve analysis of electrophysiological monitoring and early warning during intracranial aneurysm clipping. World Neurosurg 2021;155:e49–54. DOI: 10.1016/j.wneu.2021.07.131


Review

For citations:


Lukyanchikov V.A., Shatokhin T.A., Grigorevskii E.D., Staroverov M.S., Shetova I.M., Kulov Z.A., Suponeva N.A., Maksimova M.Yu., Ryabinkina Yu.V., Polishchuk R.V., Golovneva E.A., Kosolapov A.A., Starikov N.A., Krylov V.V. Alternative middle-flow extracranial-intracranial cerebral bypass using distal branches of the external carotid artery in patients with complex cerebral aneurysms (clinical cases and literature review). Russian journal of neurosurgery. 2025;27(2):100-112. https://doi.org/10.63769/1683-3295-2025-27-2-100-112

Views: 259


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X