Preview

Нейрохирургия

Расширенный поиск

Роль врожденного и приобретенного иммунитета в валлеровой дегенерации при размозжении периферических нервов

https://doi.org/10.17650/1683-3295-2024-26-4-110-115

Аннотация

   У некоторых пациентов развивается повреждение периферических нервов в результате травм, сопровождающихся сдавливанием тканей. Восстановление после травм периферических нервов часто бывает неудовлетворительным и требует месяцев или даже лет. Процесс восстановления связан как с врожденным иммунитетом, в частности шванновскими клетками, нейтрофилами и макрофагами, так и с приобретенным иммунитетом. Перед началом процесса регенерации два аспекта иммунной системы работают вместе, чтобы устранить миелин и разрушенные аксональные белки в ходе процесса валлеровой дегенерации.

Об авторах

V. Besin
Universitity of Surabaya
Индонезия

Valentinus Besin

Faculty of Medicine

Surabaya



N. Naesilla
Airlangga University
Индонезия

Naesilla Naesilla

Faculty of Medicine

Surabaya



Список литературы

1. Idris O.A., Wintola O.A., Afolayan A.J. Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon 2019;5(1):e01161. DOI: 10.1016/j.heliyon.2019

2. Menorca R.M., Fussell T.S., Elfar J.C. Nerve physiology: mechanisms of injury and recover. Hand Clin 2013;29(3):317–30. DOI: 10.1016/j.hcl.2013.04.002

3. Alvites R., Caseiro A.R., Pedrosa S.S. et al. Peripheral nerve injury and axonotmesis: state of the art and recent advances. Cogent Med 2018;5(1):1466404. DOI: 10.1080/2331205X.2018.1466404

4. DeFrancesco-Lisowitz A., Lindborg J.A., Niemi J.P., Zigmond R.E. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015;302:174–203. DOI: 10.1016/j.neuroscience.2014.09.027

5. Kurtoglu Z., Ozturk A.H., Bagdatoglu C. et al. Effects of trapidil after crush injury to a peripheral nerve. Acta Med Okayama 2005;59(2):37–44. DOI: 10.18926/AMO/31967

6. Conforti L., Gilley J., Coleman M.P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014;15(6):394–409. DOI: 10.1038/nrn3680

7. Chen P., Piao X., Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 2015;130(5):605–18. DOI: 10.1007/s00401-015-1482-4

8. Mietto B.S., Kroner A., Girolami E. et al. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J Neurosci 2015;35(50):16431–42. DOI: 10.1523/JNEUROSCI.2119-15.2015

9. Vargas M.E., Barres B.A. Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 2007;30(1):153–79. DOI: 10.1146/annurev.neuro.30.051606.094354

10. Villegas R., Martinez N.W., Lillo J. et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci 2014;34(21):7179–89. DOI: 10.1523/JNEUROSCI.4784-13.2014

11. Adalbert R., Morreale G., Paizs M. et al. Intra-axonal calcium changes after axotomy in wild-type and slow Wallerian degeneration axons. Neuroscience 2012;225:44–54. DOI: 10.1016/j.neuroscience.2012.08.056

12. Shen H., Hyrc K.L., Goldberg M.P. Maintaining energy homeostasis is an essential component of WldS-mediated axon protection. Neurobiol Dis 2013;59:69–79. DOI: 10.1016/j.nbd.2013.07.007

13. Park J.Y., Jang S.Y., Shin Y.K. et al. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience 2013;238:258–69. DOI: 10.1016/j.neuroscience.2013.02.033

14. Rosell A.L., Neukomm L.J. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019;9(8):190118. DOI: 10.1098/rsob.190118

15. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011;8(1):109. DOI: 10.1186/1742-2094-8-109

16. Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011;8(1):110. DOI: 10.1186/1742-2094-8-110

17. Boivin A., Pineau I., Barrette B. et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 2007;27(46):12565–76. DOI: 10.1523/JNEUROSCI.3027-07.2007

18. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023. DOI: 10.1038/sigtrans.2017.23

19. Hossen M.J., Yang W.S., Kim D. et al. Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep 2017;7:42995. DOI: 10.1038/srep42995

20. Sethi G., Sung B., Aggarwal B.B. Nuclear factor-κB activation: from bench to bedside. Exp Biol Med 2008;233(1):21–31. DOI: 10.3181/0707-MR-196

21. Martini R., Fischer S., López-Vales R., David S. Interactions between schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008;56(14):1566–77. DOI: 10.1002/glia.20766

22. López-Vales R., Navarro X., Shimizu T. et al. Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury. Brain 2008;131(Pt 10):2620–31. DOI: 10.1093/brain/awn188

23. Lindborg J.A., Mack M., Zigmond R.E. Neutrophils are critical for myelin removal in a peripheral nerve injury model of wallerian degeneration. J Neurosci 2017;37(43):10258–77. DOI: 10.1523/JNEUROSCI.2085-17.2017

24. Liu P., Peng J., Han G.H. et al. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 2019;14(8):1335–42. DOI: 10.4103/1673-5374.253510

25. Toews A.D., Barrett C., Morell P. Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve. J Neurosci Res 1998;53(2):260–7. DOI: 10.1002/(SICI)1097-4547(19980715)53:2<260::AID-JNR15>3.0.CO;2-A

26. Ödemis V., Boosmann K., Heinen A. et al. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J Cell Sci 2010;123(7):1081–8. DOI: 10.1242/jcs.062810

27. Ydens E., Cauwels A., Asselbergh B. et al. Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflammation 2012;9:176. DOI: 10.1186/1742-2094-9-176

28. Luo Y., Zheng S.G. Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol 2016;7:1–7. DOI: 10.3389/fimmu.2016.00604

29. Hovsepian E., Penas F., Siffo S. et al. IL-10 inhibits the NF-κB and ERK/MAPK-mediated production of pro-inflammatory mediators by up-regulation of SOCS-3 in Trypanosoma cruzi-infected cardiomyocytes. PLoS One 2013;8(11):e79445. DOI: 10.1371/JOURNAL.PONE.0079445

30. Chattopadhyay S., Myers R.R., Janes J., Shubayev V. Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007;21(5):561–8. DOI: 10.1016/J.BBI.2006.10.015

31. Chattopadhyay S., Shubayev V.I. MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 2009;57(12):1316. DOI: 10.1002/GLIA.20851

32. Chen Y.-M., Shen R.-W., Zhang B., Zhang W.-N. Regional tissue immune responses after sciatic nerve injury in rats. Int J Clin Exp Med 2015;8(8):13408–12.

33. Sun S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 2017;17(9):545–58. DOI: 10.1038/nri.2017.52

34. Ziemkiewicz N., Hilliard G., Pullen N.A., Garg K. The role of innate and adaptive immune cells in skeletal muscle regeneration. Int J Mol Sci 2021;22(6). DOI: 10.3390/IJMS22063265

35. Hu X., Liu G., Hou Y. et al. Induction of M2-like macrophages in recipient NOD-scid mice by allogeneic donor CD4(+)CD25(+) regulatory T cells. Cell Mol Immunol 2012;9(6):464–72. DOI: 10.1038/CMI.2012.47

36. Kassan M., Galan M., Partyka M. et al. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol 2011;31(11):2534–42. DOI: 10.1161/ATVBAHA.111.233262

37. Tang X., Li Q., Huang T. et al. Regenerative role of T cells in nerve repair and functional recovery. Front Immunol 2022;13:923152. DOI: 10.3389/fimmu.2022.923152

38. Stoecklein V.M., Osuka A., Lederer J.A. Trauma equals danger – damage control by the immune system. J Leukoc Biol 2012;92(3):539–51. DOI: 10.1189/jlb.0212072

39. Yuan W., Feng X. Immune cell distribution and immunoglobulin levels change following sciatic nerve injury in a rat model. Iran J Basic Med Sci 2016;19(7):794–9. DOI: 10.22038/ijbms.2016.7366

40. Heine G., Drozdenko G., Grün J.R. et al. Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts. Eur J Immunol 2014;44(6):1615–21. DOI: 10.1002/EJI.201343822

41. Couper K.N., Blount D.G., Riley E.M. IL-10: the master regulator of immunity to infection. J Immunol 2008;180(9):5771–7. DOI: 10.4049/JIMMUNOL.180.9.5771


Рецензия

Для цитирования:


Besin V., Naesilla N. Роль врожденного и приобретенного иммунитета в валлеровой дегенерации при размозжении периферических нервов. Нейрохирургия. 2024;26(4):110-115. https://doi.org/10.17650/1683-3295-2024-26-4-110-115

For citation:


Besin V., Naesilla N. The role of innate and adaptive immunity in Wallerian degeneration in peripheral nerve crush injury. Russian journal of neurosurgery. 2024;26(4):110-115. https://doi.org/10.17650/1683-3295-2024-26-4-110-115

Просмотров: 161


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X