The role of innate and adaptive immunity in Wallerian degeneration in peripheral nerve crush injury
https://doi.org/10.17650/1683-3295-2024-26-4-110-115
Abstract
Some trauma patients develop peripheral nerve injury due to crush injuries resulting from severe trauma and blunt force. Recovery from peripheral nerve injuries is frequently inadequate and requires months or even years. This recovery process is associated with both the innate immune system, comprised of Schwann cells, neutrophils, and macrophages and the adaptive immune system. Prior to the regeneration process, the two immune systems work collaboratively to eliminate myelin and axon protein debris in Wallerian degeneration.
About the Authors
V. BesinIndonesia
Valentinus Besin
Faculty of Medicine
Surabaya
N. Naesilla
Indonesia
Naesilla Naesilla
Faculty of Medicine
Surabaya
References
1. Idris O.A., Wintola O.A., Afolayan A.J. Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon 2019;5(1):e01161. DOI: 10.1016/j.heliyon.2019
2. Menorca R.M., Fussell T.S., Elfar J.C. Nerve physiology: mechanisms of injury and recover. Hand Clin 2013;29(3):317–30. DOI: 10.1016/j.hcl.2013.04.002
3. Alvites R., Caseiro A.R., Pedrosa S.S. et al. Peripheral nerve injury and axonotmesis: state of the art and recent advances. Cogent Med 2018;5(1):1466404. DOI: 10.1080/2331205X.2018.1466404
4. DeFrancesco-Lisowitz A., Lindborg J.A., Niemi J.P., Zigmond R.E. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015;302:174–203. DOI: 10.1016/j.neuroscience.2014.09.027
5. Kurtoglu Z., Ozturk A.H., Bagdatoglu C. et al. Effects of trapidil after crush injury to a peripheral nerve. Acta Med Okayama 2005;59(2):37–44. DOI: 10.18926/AMO/31967
6. Conforti L., Gilley J., Coleman M.P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014;15(6):394–409. DOI: 10.1038/nrn3680
7. Chen P., Piao X., Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 2015;130(5):605–18. DOI: 10.1007/s00401-015-1482-4
8. Mietto B.S., Kroner A., Girolami E. et al. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J Neurosci 2015;35(50):16431–42. DOI: 10.1523/JNEUROSCI.2119-15.2015
9. Vargas M.E., Barres B.A. Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 2007;30(1):153–79. DOI: 10.1146/annurev.neuro.30.051606.094354
10. Villegas R., Martinez N.W., Lillo J. et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci 2014;34(21):7179–89. DOI: 10.1523/JNEUROSCI.4784-13.2014
11. Adalbert R., Morreale G., Paizs M. et al. Intra-axonal calcium changes after axotomy in wild-type and slow Wallerian degeneration axons. Neuroscience 2012;225:44–54. DOI: 10.1016/j.neuroscience.2012.08.056
12. Shen H., Hyrc K.L., Goldberg M.P. Maintaining energy homeostasis is an essential component of WldS-mediated axon protection. Neurobiol Dis 2013;59:69–79. DOI: 10.1016/j.nbd.2013.07.007
13. Park J.Y., Jang S.Y., Shin Y.K. et al. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience 2013;238:258–69. DOI: 10.1016/j.neuroscience.2013.02.033
14. Rosell A.L., Neukomm L.J. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019;9(8):190118. DOI: 10.1098/rsob.190118
15. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011;8(1):109. DOI: 10.1186/1742-2094-8-109
16. Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011;8(1):110. DOI: 10.1186/1742-2094-8-110
17. Boivin A., Pineau I., Barrette B. et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 2007;27(46):12565–76. DOI: 10.1523/JNEUROSCI.3027-07.2007
18. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023. DOI: 10.1038/sigtrans.2017.23
19. Hossen M.J., Yang W.S., Kim D. et al. Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep 2017;7:42995. DOI: 10.1038/srep42995
20. Sethi G., Sung B., Aggarwal B.B. Nuclear factor-κB activation: from bench to bedside. Exp Biol Med 2008;233(1):21–31. DOI: 10.3181/0707-MR-196
21. Martini R., Fischer S., López-Vales R., David S. Interactions between schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008;56(14):1566–77. DOI: 10.1002/glia.20766
22. López-Vales R., Navarro X., Shimizu T. et al. Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury. Brain 2008;131(Pt 10):2620–31. DOI: 10.1093/brain/awn188
23. Lindborg J.A., Mack M., Zigmond R.E. Neutrophils are critical for myelin removal in a peripheral nerve injury model of wallerian degeneration. J Neurosci 2017;37(43):10258–77. DOI: 10.1523/JNEUROSCI.2085-17.2017
24. Liu P., Peng J., Han G.H. et al. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 2019;14(8):1335–42. DOI: 10.4103/1673-5374.253510
25. Toews A.D., Barrett C., Morell P. Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve. J Neurosci Res 1998;53(2):260–7. DOI: 10.1002/(SICI)1097-4547(19980715)53:2<260::AID-JNR15>3.0.CO;2-A
26. Ödemis V., Boosmann K., Heinen A. et al. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J Cell Sci 2010;123(7):1081–8. DOI: 10.1242/jcs.062810
27. Ydens E., Cauwels A., Asselbergh B. et al. Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflammation 2012;9:176. DOI: 10.1186/1742-2094-9-176
28. Luo Y., Zheng S.G. Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol 2016;7:1–7. DOI: 10.3389/fimmu.2016.00604
29. Hovsepian E., Penas F., Siffo S. et al. IL-10 inhibits the NF-κB and ERK/MAPK-mediated production of pro-inflammatory mediators by up-regulation of SOCS-3 in Trypanosoma cruzi-infected cardiomyocytes. PLoS One 2013;8(11):e79445. DOI: 10.1371/JOURNAL.PONE.0079445
30. Chattopadhyay S., Myers R.R., Janes J., Shubayev V. Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007;21(5):561–8. DOI: 10.1016/J.BBI.2006.10.015
31. Chattopadhyay S., Shubayev V.I. MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 2009;57(12):1316. DOI: 10.1002/GLIA.20851
32. Chen Y.-M., Shen R.-W., Zhang B., Zhang W.-N. Regional tissue immune responses after sciatic nerve injury in rats. Int J Clin Exp Med 2015;8(8):13408–12.
33. Sun S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 2017;17(9):545–58. DOI: 10.1038/nri.2017.52
34. Ziemkiewicz N., Hilliard G., Pullen N.A., Garg K. The role of innate and adaptive immune cells in skeletal muscle regeneration. Int J Mol Sci 2021;22(6). DOI: 10.3390/IJMS22063265
35. Hu X., Liu G., Hou Y. et al. Induction of M2-like macrophages in recipient NOD-scid mice by allogeneic donor CD4(+)CD25(+) regulatory T cells. Cell Mol Immunol 2012;9(6):464–72. DOI: 10.1038/CMI.2012.47
36. Kassan M., Galan M., Partyka M. et al. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol 2011;31(11):2534–42. DOI: 10.1161/ATVBAHA.111.233262
37. Tang X., Li Q., Huang T. et al. Regenerative role of T cells in nerve repair and functional recovery. Front Immunol 2022;13:923152. DOI: 10.3389/fimmu.2022.923152
38. Stoecklein V.M., Osuka A., Lederer J.A. Trauma equals danger – damage control by the immune system. J Leukoc Biol 2012;92(3):539–51. DOI: 10.1189/jlb.0212072
39. Yuan W., Feng X. Immune cell distribution and immunoglobulin levels change following sciatic nerve injury in a rat model. Iran J Basic Med Sci 2016;19(7):794–9. DOI: 10.22038/ijbms.2016.7366
40. Heine G., Drozdenko G., Grün J.R. et al. Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts. Eur J Immunol 2014;44(6):1615–21. DOI: 10.1002/EJI.201343822
41. Couper K.N., Blount D.G., Riley E.M. IL-10: the master regulator of immunity to infection. J Immunol 2008;180(9):5771–7. DOI: 10.4049/JIMMUNOL.180.9.5771
Review
For citations:
Besin V., Naesilla N. The role of innate and adaptive immunity in Wallerian degeneration in peripheral nerve crush injury. Russian journal of neurosurgery. 2024;26(4):110-115. https://doi.org/10.17650/1683-3295-2024-26-4-110-115