Intraoperative neuromonitoring in surgery of supratentorial brain tumors. Part 1. Assessment of motor conductivity
https://doi.org/10.17650/1683-3295-2022-24-2-105-112
Abstract
Monitoring of motor evoked potentials in surgery of supratentorial tumors estimates integrity of cortical motor centers and subcortical pathways. Violation of motor evoked potentials takes place in mechanical injury or ischemia of motor neurons. Decrease of amplitude of motor evoked potentials more than 50 % is predictor of permanent neurological deficit.
Cortical mapping gives a possibility to discover eloquent brain areas before their resection. To reveal motor centers activating stimulation is applied, to find out speech or sensory areas – the inhibiting one. Positive brain mapping allows to exclude technical fault in selection of stimulation threshold but it demands a wide craniotomy. Negative mapping is more widespread, gives opportunity to use tailored craniotomy that reduces surgical injury and duration of operation. One of the most valuable factors in cortical and subcortical brain mapping is the stimulation threshold. With monopolar «train» stimulation current 1 mA spreads into approximately 1 mm. The safe value of current intensity during tumor resection in eloquent areas is 3–5 mA.
Monopolar stimulation demands less time for location of eloquent brain areas, it is as accurate as the bipolar mapping and more rarely leads to intraoperative seizures. Combination of monopolar stimulator with aspirator gives opportunity to continuously allocate pyramidal tract in tumor resection.
About the Authors
A. Yu. DmitrievRussian Federation
Aleksandr Yurevich Dmitriev
3 Bolshaya Sukharevskaya Sq., Moscow, 129090;
Bld. 1, 20 Delegatskaya St., Moscow, 127473
M. V. Sinkin
Russian Federation
3 Bolshaya Sukharevskaya Sq., Moscow, 129090;
Bld. 1, 20 Delegatskaya St., Moscow, 127473
V. G. Dashyan
Russian Federation
3 Bolshaya Sukharevskaya Sq., Moscow, 129090;
Bld. 1, 20 Delegatskaya St., Moscow, 127473
References
1. Nimsky C., Kuhnt D., Ganslandt O., Buchfelder M. Multimodal navigation integrated with imaging. Acta Neurochir Suppl 2011;109:207–14. DOI: 10.1007/978-3-211-99651-5_32.
2. Krishnan R., Raabe A., Hattingen E. et al. Functional magnetic resonance imagingintegrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 2004;55(4):904–15. DOI: 10.1227/01.neu.0000137331.35014.5c.
3. Cannestra A.F., Pouratian N., Forage J. et al. Functional magnetic resonance imaging and optical imaging for dominant-hemisphere perisylvian arteriovenous malformations. Neurosurgery 2004;55(4):804–14. DOI: 10.1227/01.neu.0000137654.27826.71.
4. Duffau H., Lopes M., Arthuis F. et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–1996) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 2005;76(6):845–51. DOI: 10.1136/jnnp.2004.048520.
5. Southwell D.G., Birk H.S., Han S.J. et al. Resection of gliomas deemed inoperable by neurosurgeons based on preoperative imaging studies. J Neurosurg 2018;129(3):567–75. DOI: 10.3171/2017.5.JNS17166.
6. Nimsky C., Ganslandt O., Cerny S. et al. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47(5):1070–9. DOI: 10.1097/00006123-200011000-00008.
7. Seifert V., Gasser T., Senft C. Low field intraoperative MRI in glioma surgery. Acta Neurochir Suppl 2011;109:35–41. DOI: 10.1007/978-3-211-99651-5_6.
8. Bohinski R.J., Kokkino A.K., Warnick R.E. et al. Glioma resection in a sharedresource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 2001;48(4):731–42. DOI: 10.1097/00006123-200104000-00007.
9. Ostry S., Belsan T., Otahal J. et al. Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical corticospinal tract mapping? Neurosurgery 2013;73(5):797–807. DOI: 10.1227/NEU.0000000000000087.
10. Duffau H. Awake surgery for nonlanguage mapping. Neurosurgery 2010;66(3):523–8. DOI: 10.1227/01.NEU.0000364996.97762.73.
11. Zhou H.H., Kelly P.J. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery 2001;48(5):1075–80. DOI: 10.1097/00006123-200105000-00021.
12. Szelenyi A., Hattingen E., Weidauer S. et al. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery 2010;67(2): 302–13. DOI: 10.1227/01.NEU.0000371973.46234.46.
13. Neuloh G., Pechstein U., Cedzich C., Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 2004;54(5):1061–70. DOI: 10.1227/01.neu.0000119326.15032.00.
14. Szelenyi A., Langer D., Kothbauer K. et al. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg 2006;105(5):675–81. DOI: 10.3171/jns.2006.105.5.675.
15. Neuloh G., Pechstein U., Schramm J. Motor tract monitoring during insular glioma surgery. J Neurosurg 2007;106(4):582–92. DOI: 10.3171/jns.2007.106.4.582.
16. Krieg S.M., Shiban E., Droese D. et al. Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in glioma surgery. Neurosurgery 2012;70(5):1060–70. DOI: 10.1227/NEU.0b013e31823f5ade.
17. Krieg S.M., Schaffner M., Shiban E. et al. Reliability of intraoperative neurophysiological monitoring using motor evoked potentials during resection of metastases in motor-eloquent brain regions: clinical article. J Neurosurg 2013;118(6):1269–78. DOI: 10.3171/2013.2.JNS121752.
18. Seidel K., Beck J., Stieglitz L. et al. Lowthreshold monopolar motor mapping for resection of primary motor cortex tumors. Operative Neurosurgery 2012;71(1 Suppl Operative):104–14. DOI: 10.1227/NEU.0b013e31824c02a0.
19. Gempt J., Krieg S.M., Huttinger S. et al. Postoperative ischemic changes after glioma resection identified by diffusionweighted magnetic resonance imaging and their association with intraoperative motor evoked potentials. J Neurosurg 2013;119(4):829–36. DOI: 10.3171/2013.5.JNS121981.
20. Zhukov V.Yu., Goryaynov S.A., Ogurtsova A.A. et al. Diffusion tensor imaging tractography and intraoperative neurophysiological monitoring in surgery of intracranial tumors located near the pyramidal tract. Zhurnal Voprosy Neirokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2016;80(1):5–18. (In Russ., In Eng.). DOI: 10.17116/neiro20168015-18.
21. Zuev A.A., Korotchenko E.N., Ivanova D.S. et al. Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts. Zhurnal Voprosy Neirokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2017;81(1):39–50. (In Russ.). DOI: 10.17116/neiro201780739-50.
22. Suess O., Kombos T., Suess S. et al. The influence of intra-operative brain shift on continuous cortical stimulation during surgery in the motor cortex – an illustrative case report. Acta Neurochir (Wien) 2001;143(6):621–3. DOI: 10.1007/s007010170068.
23. Tharin S., Golby A. Functional brain mapping and its applications to neurosurgery. Neurosurgery 2007; 60(4 Suppl 2):185–201. DOI: 10.1227/01.NEU.0000255386.95464.52.
24. Kobyakov G.L., Lubnin A.Yu., Kulikov A.S. et al. Awake craniotomy. Zhurnal Voprosy Neirokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2016;80(1):107–16. (In Russ., In Eng.). DOI: 10.17116/neiro2016801107-116.
25. Sanai N., Mirzadeh Z., Berger M.S. Functional outcome after language mapping for glioma resection. N Engl J Med 2008;358(1):18–27. DOI: 10.1056/NEJMoa067819.
26. Trinh V.T., Fahim D.K., Shah K. et al. Subcortical injury is an independent predictor of worsening neurological deficits following awake craniotomy procedures. Neurosurgery 2013;72(2):160–9. DOI: 10.1227/NEU.0b013e31827b9a11.
27. Ulitin A.Yu., Kostenko I.A., Alexandrov M.V. et al. Motor cortex mapping and symptomatic epilepsy in patients with primary glial tumors. Russian neurosurgical journal named after professor A.A. Polenov 2017;9(2):50–4. (In Russ.).
28. Prabhu S.S., Gasco J., Tummala S. et al. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg 2011;114(3):719–26. DOI: 10.3171/2010.9.JNS10481.
29. Duffau H. Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir (Wien) 2012;154(4):575–84. DOI: 10.1007/s00701-011-1216-x.
30. Suess O., Kombos T., Hoell T. et al. A new cortical electrode for neuronavigationguided intraoperative neurophysiological monitoring: technical note. Acta Neurochir (Wien) 2000;142(3):329–32. DOI: 10.1007/s007010050042.
31. Krings T., Schreckenberger M., Rohde V. et al. Functional MRI and 18F FDGpositron emission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir (Wien) 2002;144(9):889–99. DOI: 10.1007/s00701-002-0992-8.
32. Kim S.S., McCutcheon I.E., Suki D. et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery 2009;64(5):836–45. DOI: 10.1227/01.NEU.0000342405.80881.81.
33. Naeser M.A., Palumbo C.L., Helm-Estabrooks N. et al. Severe nonfluency in aphasia: role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain 1989;112(1):1–38. DOI: 10.1093/brain/112.1.1.
34. Shiban E., Krieg S.M., Haller B. et al. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg 2015;123(3):711–20. DOI: 10.3171/2014.10.JNS141289.
35. Ohue S., Kohno S., Inoue A. et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 2012;70(2):283–93. DOI: 10.1227/NEU.0b013e31823020e6.
36. Nossek E., Korn A., Shahar T. et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J Neurosurg 2011;114(3):738–46. DOI: 10.3171/2010.8.JNS10639.
37. Plans G., Fernandez-Conejero I., Rifa-Ros X. et al. Evaluation of the highfrequency monopolar stimulationtechnique for mapping and monitoring the corticospinal tract in patients with supratentorial gliomas. A proposal for intraoperative management based on neurophysiological data analysis in a series of 92 patients. Neurosurgery 2017;81(4):585–94. DOI: 10.1093/neuros/nyw087.
38. Seidel K., Beck J., Stieglitz L. et al. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg 2013;118(2):287–96. DOI: 10.3171/2012.10.JNS12895.
39. Raabe A., Beck J., Schucht P., Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 2014;120(5):1015–24. DOI: 10.3171/2014.1.JNS13909.
40. Shiban E., Krieg S.M., Obermueller T. et al. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg 2015;123(2):301–6. DOI: 10.3171/2014.11.JNS141555.
41. Javadi S.A., Nabavi A., Giordano M. et al. Evaluation of diffusion tensor imagingbased tractography of the corticospinal tract: a correlative study with intraoperative magnetic resonance imaging and direct electrical subcortical stimulation. Neurosurgery 2017;80(2):287–99. DOI: 10.1227/NEU.0000000000001347.
42. Mandonnet E., Winkler P.A., Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien) 2010;152(2):185–93. DOI: 10.1007/s00701-009-0469-0.
43. Riva M., Fava E., Gallucci M. et al. Monopolar high-frequency language mapping: can it help in the surgical management of gliomas? A comparative clinical study. J Neurosurg 2016;124(5):1479–89. DOI: 10.3171/2015.4.JNS14333.
44. Kosyrkova A.V., Goryainov S.A., Ogurtsova A.A. et al. Comparative analysis of mono- and bipolar pyramidal tract mapping in patients with supratentorial tumors adjacent to motor areas: comparison of data at 64 stimulation points. Zhurnal Voprosy Neirokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery 2020;84(5):29–40. (In Russ.). DOI: 10.17116/neiro20208405129.
45. Kombos T., Suess O., Funk T. et al. Intraoperative mapping of the motor cortex during surgery in and around the motor cortex. Acta Neurochir (Wien) 2000;142(3):263–8. DOI: 10.1007/s007010050034.
Review
For citations:
Dmitriev A.Yu., Sinkin M.V., Dashyan V.G. Intraoperative neuromonitoring in surgery of supratentorial brain tumors. Part 1. Assessment of motor conductivity. Russian journal of neurosurgery. 2022;24(2):105-112. (In Russ.) https://doi.org/10.17650/1683-3295-2022-24-2-105-112