Preview

Russian journal of neurosurgery

Advanced search

Decision support technology for clinical data cognitive analysis

https://doi.org/10.17650/1683-3295-2021-23-4-121-125

Abstract

A practicing physician is faced with decision-making problems in uncertainty terms in his daily activities such as a lot of different information about the patient. Diagnostic issues, identification of patient management leading modalities is associated with the demand for high-quality prognosis of the disease course, calculating the risks of complications and adverse outcomes that especially problematic in emergency situations. The human brain is significantly surrender to modern computers in processing power, but it is able to instantly interpret information and analyze it, and also it is able to learn, form ideas, make conclusions. Attempt of association both the computational power and human brain intuitive analysis was reflected in the construction of computer programs based on the “Neural networks”. Together with the information technology development, the design of new neural networks configurations, and their training principles, its chances turn up in the physician daily activity decision making sphere.

About the Authors

N. V. Lavrinenko
Clinical Emergency Hospital
Russian Federation

71 M. Koneva St., Tver 170024



D. A. Gulyaev
V.A. Almazov National Medical Research Center; North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Dmitry Aleksandrovich Gulyaev 

12 Mayakovsky St., St. Petersburg 191104

41 Kirochnaya St., St. Petersburg 191015



V. A. Manukovskiy
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

41 Kirochnaya St., St. Petersburg 191015



References

1. Святочевский П.А., Гуляев Д.А., Орлов В.Н. и др. Исследование динамики хирургической активности в отношении гипертензивных внутримозговых гематом с помощью математического моделирования на примере Республики Чувашия. Саратовский научно-медицинский журнал 2019;15(2):308–12. [Svyatochevsky P.A., Gulyaev D.A., Orlov V.N. et al. Investigation of the dynamics of surgical activity in relation to hypertensive intracerebral hematomas using mathematical modeling on the example of the Republic of Chuvashia. Saratovskiy nauchnomeditsinskiy zhurnal = Saratov Scientific and Medical Journal 2019;15(2):308–12. (In Russ.)].

2. Старков Е.Ф. Система поддержки принятия решений в медицине. Вестник новых медицинских технологий 2006;13(2). [Starkov E.F. Decision support system in medicine. Vestnik novykh meditsinskikh tekhnologiy = Bulletin of New Medical Technologies 2006;13(2). (In Russ.)].

3. Гусев А.В. Перспективы нейронных сетей и глубокого машинного обучения в создании решений для здравоохранения. Искусственный интеллект в здравоохранении 2017(3):92–106. [Gusev A.V. Prospects of neural networks and deep machine learning in creating solutions for healthcare. Iskusstvennyy intellekt v zdravookhranenii = Artificial intelligence in healthcare 2017(3):92–106. (In Russ.)].

4. McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943;5:115–33. DOI: 10.1007/BF02478259.

5. Ясницкий Л.Н., Думлер А.А., Богданов К.В. и др. Диагностика и прогнозирование течения заболеваний сердечно-сосудистой системы на основе нейронных сетей. Медицинская техника 2013(3):42–4. [Yasnitskiy L.N., Dumler A.A., Bogdanov K.V. et al. Diagnosis and prediction of the course of diseases of the cardiovascular system based on neural networks. Meditsinskaya tekhnika = Medical equipment 2013(3):42–4. (In Russ.)].

6. Christopher J.J., Ramakrishnan S., Sangeetha S. Wavelet based qualitative assessment of femur bone strength using radiographic imaging. International Journal of Computer and Information Engineering 2008;2(5):1407–10. DOI: 10.5281/zenodo.1074675.

7. Kilic N., Ucan O.N. Colonic polyp detection in CT colonography with fuzzy rule based 3D template matching. J Med Syst 2009;33(1):9–18. DOI: 10.1007/s10916-008-9159-3.

8. Chen H., Xu Y., Ma Y. et al. Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images: clinical evaluation. Acad Radiol 2010;17(5):595–602. DOI: 10.1016/j.acra.2009.12.009.

9. Salah B., Alshraideh M., Beidas R. et al. Skin cancer recognition by using a neurofuzzy system. Cancer Informatics 2011; 10(2):1–11. DOI: 10.4137/CIN.S5950.

10. Mena L.J., Félix V.G., Ochoa A. et al. Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly. Comput Math Methods Med 2018(5):e912805. DOI: 10.1155/2018/9128054 e912805.

11. Toney L.K., Vesselle H.J. Neural networks for nodal staging of non-small cell lung cancer with FDG PET and CT: importance of combining uptake values and sizes of nodes and primary tumor. Radiology 2014;270(1):91–8. DOI: 10.1148/radiol.13122427.

12. Hirose H., Takayama T., Hozawa S. et al. Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin. Comput Biol Med 2011;41(11):1051–6. DOI: 10.1016/j.compbiomed.2011.09.005.

13. Andersson B., Andersson R., Ohlssonb M. et al. Prediction of severe acute pancreatitis at admission to hospital using artificial neural networks. Pancreatology 2011;11(3):328–35. DOI: 10.1159/000327903.

14. Narain R., Saxena S., Goyal A.K. Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach. Patient Prefer Adherence 2016(10):1259–70. DOI: 10.2147/PPA.S108203.

15. Mayer A., Zverinski D., Pfahringer B. et al. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med 2018;6(12):905–14. DOI: 10.1016/S2213-2600(18)30300-X.


Review

For citations:


Lavrinenko N.V., Gulyaev D.A., Manukovskiy V.A. Decision support technology for clinical data cognitive analysis. Russian journal of neurosurgery. 2021;23(4):121-125. (In Russ.) https://doi.org/10.17650/1683-3295-2021-23-4-121-125

Views: 414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X