Preview

Нейрохирургия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Глубокая стимуляция головного мозга. Каким образом она контролирует движения при болезни Паркинсона?

https://doi.org/10.17650/1683-3295-2019-21-3-93-99

Полный текст:

Аннотация

Методика глубокой стимуляции головного мозга (deep brain stimulation, DBS) предполагает имплантацию электродов в базальные ядра головного мозга. Дисрегуляция нейрональной активности именно в этих структурах считается причиной двигательных расстройств. DBS применяется при многих двигательных нарушениях (болезни Паркинсона, эссенциальном треморе, дистонии, тиках, тардивной дискинезии и др.), психических, поведенческих и аффективных расстройствах (депрессии, обсессивно-компульсивном расстройстве, эпилепсии и др.), а также при резистентных к медикаментозной терапии тяжелых болевых синдромах. Однако механизмы действия DBS не до конца изучены. В настоящее время рассматриваются различные теории и гипотезы, объясняющие механизм возникновения ее лечебного эффекта: частотная модель, теория «заклинивания», гипотезы о влиянии на нейрогенез, активности астроцитов, усилении мозгового кровотока, электротаксисе и др.

Об авторе

З. А. Залялова
ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России
Россия
Зулейха Абдуллазяновна Залялова


Список литературы

1. Martinez-Ramirez D., Hu W., Bona A.R. et al. Update on deep brain stimulation in Parkinson’s disease. Transl Neurodegener 2015;4:12. DOI: 10.1186/s40035-015-0034-0.

2. Залялова З.А., Шабалов В.А. Нейрохирургическое лечение болезни Паркинсона в вопросах и ответах. Методическое пособие. Казань, 2008. 24 с. [Zalyalova Z.A, Shabalov V.A. Neurosurgical treatment of Parkinson’s disease: questions and answers. Methodological guide. Kazan, 2008. 24 p. (In Russ.)].

3. Reynolds E. Todd, Faraday and the electrical basis of brain activity. Pract Neurol 2007;7(5):331–5. DOI: 10.1136/jnnp.2007.129023.

4. Benabid A.L., Pollak P., Louveau A. et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987;50(1–6):344–6. DOI: 10.1016/S0090-3019(97)00459-X.

5. Экстрапирамидные расстройства. Руководство по диагностике и лечению. Под ред. В.Н. Штока, И.А. Ивановой-Смоленской, О.С. Левина. М.: МЕДпресс-информ, 2002. 606 с. [Extrapyramidal disorder. Guidelines for diagnosis and treatment. Ed. by V.N. Shtock, I.A. Ivanova-Smolenskaya, O.S. Levin. Moscow: MEDpress-inform, 2002. 606 p. (In Russ.)].

6. Тюрников В.М., Федотова Е.Ю., Иванова Е.О. и др. Хирургическое лечение эссенциального тремора: хроническая электростимуляция мозга с двусторонней имплантацией электродов в вентральное промежуточное ядро таламуса. Нервные болезни 2013;(3):22–8. [Tyurnikov V.M., Fedotova E.Yu., Ivanova E.O. et al. Surgical treatment of essential tremor: chronic brain electrostimulation with bilateral implantation of electrodes into the ventral intermediate nucleus of the thalamus. Nervnye bolezni = Journal of Nervous Diseases 2013;(3):22–8. (In Russ.)].

7. Левин О.С., Федорова Н.В. Болезнь Паркинсона. 4-е изд. М.: МЕДпрессинформ, 2015. 352 с. [Levin O.S., Fedorova N.V. Parkinson’s Disease. 4th edn. Moscow: MEDpress-inform, 2015. 352 p. (In Russ.)].

8. Залялова З.А. Высокие технологии в лечении экстрапирамидных заболеваний. Врач 2010;(3):5–10. [Zalyalova Z.A. High technologies in the treatment of extrapyramidal diseases. Vrach = The Doctor 2010;(3): 5–10. (In Russ.)].

9. Томский А.А., Федорова Н.В., Шабалов В.А. и др. Нейрохирургическое лечение болезни Паркинсона. Пожилой пациент 2016;6(2):31–4. [Tomsky A.A., Fedorova N.V., Shabalov V.A. et al. Neurosurgical treatment of Parkinson’s disease. Pozhiloy patsient = Elderly Patient 2016;6(2):31–4. (In Russ.)].

10. Гусев Е.И., Катунина Е.А., Титова Н.В. Глубокая стимуляция мозга в лечении болезни Паркинсона. Вестник Росздравнадзора 2016;(6):54–60. [Gusev E.I., Katunina E.A., Titova N.V. Deep brain stimulation in Parkinson disease therapy. Vestnik Roszdravnadzora = Journal of Federal Service for Surveillance in Healthcare 2016;(6):54–60. (In Russ.)].

11. Ashkan K., Rogers P., Bergman H., Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 2017;13(9):548–54. DOI: 10.1038/nrneurol.2017.105.

12. DeLong M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13(7):281–5.

13. Brittain J.S., Sharott A., Brown P. The highs and lows of beta activity in cortico-basal ganglia loops. Eur J Neurosci 2014;39(11):1951–9. DOI: 10.1111/ejn.12574.

14. De Hemptinne C., Ryapolova-Webb E.S., Air E.L. et al. Exaggerated phaseamplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci USA 2013;110(12):4780–5. DOI: 10.1073/pnas.1214546110.

15. Levy R., Hutchison W.D., Lozano A.M., Dostrovsky J.O. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 2000;20(20):7766–75. DOI: 10.1016/j.baga.2014.11.001.

16. Moran A., Bergman H., Israel Z., Bar-Gad I. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 2008;131(Pt 12): 3395–409. DOI: 10.1093/brain/awn270.

17. Magill P.J., Bolam J.P., Bevan M.D. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 2001;106(2):313–30. DOI: 10.1016/s0306-4522(01)00281-0.

18. Soares J., Kliem M.A., Betarbet R. et al. Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. J Neurosci 2004;24(29):6417–26. DOI: 10.1523/ JNEUROSCI.0836-04.2004.

19. Weinberger M., Mahant N., Hutchison W.D. et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 2006;96(6):3248–56. DOI: 10.1152/jn.00697.2006.

20. Wichmann T., DeLong M.R., Guridi J., Obeso J.A. Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord 2011;26(6):1032–41. DOI: 10.1002/mds.23695.

21. Sharott A., Gulberti A., Zittel S. et al. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J Neurosci 2014;34(18):6273–85. DOI: 10.1523/JNEUROSCI. 1803-13.2014.

22. Wichmann T., DeLong M.R. Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 2016;13(2):264–83. DOI: 10.1007/s13311-016-0426-6.

23. Limousin P., Pollak P., Benazzouz A. et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995;345(8942):91–5. DOI: 10.1016/s0140-6736(95)90062-4.

24. Hamani C., Florence G., Heinsen H. et al. Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro 2017;4(5). DOI: 10.1523/ENEURO.0140-17.2017.

25. Pahapill P.A., Levy R., Dostrovsky J.O. et al. Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Ann Neurol 1999;46(2):249–52.

26. Montgomery E.B. Jr, Gale J.T. Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev 2008;32(3):388–407. DOI: 10.1016/j.neubiorev.2007.06.003.

27. Hashimoto T., Elder C.M., Okun M.S. et al. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003;23(5):1916–23.

28. Stefani A., Fedele E., Galati S. et al. Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 2005;57(3):448–52. DOI: 10.1002/ana.20402.

29. Montgomery E.B. Jr. Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol 2006;117(12):2691–702. DOI: 10.1016/j.clinph.2006.08.011.

30. Windels F., Bruet N., Poupard A. et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 2000;11(12):4141–6.

31. Perlmutter J.S., Mink J.W., Bastian A.J. et al. Blood flow responses to deep brain stimulation of thalamus. Neurology 2002;58(9):1388–94. DOI: 10.1212/wnl.58.9.1388.

32. Lanotte M.M., Rizzone M., Bergamasco B. et al. Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 2002;72(1):53–8. DOI: 10.1136/jnnp.72.1.53.

33. Vitek J.L., Hashimoto T., Peoples J. et al. Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs. Mov Disord 2004; 19(8):907–15. DOI: 10.1002/mds.20137.

34. Dostrovsky J.O., Levy R., Wu J.P. et al. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 2000;84(1):570–4. DOI: 10.1152/jn.2000.84.1.570.

35. Montgomery E.B. Jr, Baker K.B. Mechanisms of deep brain stimulation and future technical developments. Neurol Res 2000;22(3):259–66.

36. Jech R., Urgosík D., Tintera J. et al. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord 2001;16(6):1126–32.

37. Knight E.J., Testini P., Min H.K. et al. Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clin Proc 2015;90(6):773–85. DOI: 10.1016/j.mayocp.2015.03.022.

38. Vitek J.L., Chockkan V., Zhang J.Y. et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 1999;46(1):22–35.

39. Benabid A.L., Benazzous A., Pollak P. Mechanisms of deep brain stimulation. Mov Disord 2002;17 Suppl 3:S73–4.

40. Rubin J.E., Terman D. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 2004;16(3):211–35. DOI: 10.1023/B:JCNS.0000025686. 47117.67.

41. Rizzone M., Lanotte M., Bergamasco B. et al. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 2001;71(2):215–9. DOI: 10.1136/jnnp.71.2.215.

42. Gale J.T. Basis of periodic activities in the basal ganglia-thalamic-cortical system of the Rhesus Macaque. Kent State University, ProQuest Dissertations Publishing, 2004. 3133685.

43. Wingeier B., Tcheng T., Koop M.M. et al. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 2006;197(1):244–51. DOI: 10.1016/j.expneurol.2005.09.016.

44. Bronte-Stewart H., Barberini C., Koop M.M. et al. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 2009;215(1):20–8. DOI: 10.1016/j.expneurol.2008.09.008.

45. Zaidel A., Spivak A., Grieb B. et al. Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 2010;133(Pt 7):2007–21. DOI: 10.1093/brain/awq144.

46. Giannicola G., Marceglia S., Rossi L. et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp Neurol 2010;226(1):120–7. DOI: 10.1016/j.expneurol.2010.08.011.

47. Eusebio A., Thevathasan W., Doyle Gaynor L. et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry 2011;82(5):569–73. DOI: 10.1186/1743-0003-10-33.

48. Davidson C.M., de Paor A.M., Lowery M.M. Application of describing function analysis to a model of deep brain stimulation. IEEE Trans Biomed Eng 2014;61(3):957–65. DOI: 10.1109/TBME.2013.2294325.

49. McIntyre C.C., Chaturvedi A., Shamir R.R., Lempka S.F. Engineering the next generation of clinical deep brain stimulation technology. Brain Stimul 2015;8(1): 21–6. DOI: 10.1016/j.brs.2014.07.039.

50. Little S., Pogosyan A., Neal S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013;74(3):449–57. DOI: 10.1002/ana.23951.

51. Hamilton N.B., Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 2010;11(4):227–38. DOI: 10.1038/nrn2803.

52. Vedam-Mai V., van Battum E.Y., Kamphuis W. et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry 2011;17(2):124–31. DOI: 10.1038/mp.2011.61.

53. Fenoy A.J., Goetz L., Chabardès S., Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014;20(3):191–201. DOI: 10.1111/cns.12223.

54. Tawfik V.L., Chang S.Y., Hitti F.L. et al. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes. Neurosurgery 2010;67(2):367–75. DOI: 10.1227/01. NEU.0000371988.73620.4C.

55. Bekar L., Libionka W., Tian G.F. et al. Adenosine is crucial for deep brain stimulation mediated attenuation of tremor. Nat Med 2008;14(1):75–80. DOI: 10.1038/nm1693.

56. Wallace B.A., Ashkan K., Heise C.E. et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 2007;130(Pt 8):2129–45. DOI: 10.1093/brain/awm137.

57. Ho D.X., Tan Y.C., Tan J. et al. Highfrequency stimulation of the globus pallidus interna nucleus modulates GFRα1 gene expression in the basal ganglia. J Clin Neurosci 2014;21(4):657–60. DOI: 10.1016/j.jocn.2013.05.024.

58. Herrington T.M., Cheng J.J., Eskandar E.N. Mechanisms of deep brain stimulation. J Neurophysiol 2016;115(1):19–38. DOI: 10.1152/jn.00281.2015.

59. Kájdár E., Lim L.W., Carreras G. et al. High-frequency stimulation of the ventrolateral thalamus regulates gene expression in hippocampus, motor cortex and caudate-putamen. Brain Res 2011;1391:1–13. DOI: 10.1016/ j.brainres.2011.03.059.

60. Vedam-Mai V., Gardner B., Okun M.S. et al. Increased precursor cell proliferation after deep brain stimulation for Parkinson’s disease: a human study. PLoS One 2014;9(3):e88770. DOI: 10.1371/journal.pone.0088770.

61. Vedam-Mai V., Baradaran-Shoraka M., Reynolds B.A., Okun M.S. Tissue response to deep brain stimulation and microlesion: a comparative study. Neuromodulation 2016;19(5):451–8. DOI: 10.1111/ner.12406.

62. Wolz M., Hauschild J., Koy J. et al. Immediate effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 2012;18(8):994–7. DOI: 10.1016/j.parkreldis.2012.05.011.

63. Alegre M., Lopez-Azcarate J., Obeso I. et al. The subthalamic nucleus is involved in successful inhibition in the stop-signal task: a local field potential study in Parkinson’s disease. Exp Neurol 2013;239:1–12. DOI: 10.1016/j.expneurol.2012.08.027.

64. Aron A.R., Poldrack R.A. Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 2006;26(9):2424–33. DOI: 10.1523/ JNEUROSCI.4682-05.2006.

65. Benis D., David O., Lachaux J.P. et al. Subthalamic nucleus activity dissociate proactive and reactive inhibition in patients with Parkinson’s disease. Neuroimage 2014;91:273–81. DOI: 10.1016/j.neuroimage. 2013.10.070.

66. Aron A.R., Herz D.M., Brown P. et al. Frontosubthalamic circuits for control of action and cognition. J Neurosci 2016;36(45):11489–95. DOI: 10.1523/ JNEUROSCI.2348-16.2016.

67. Bonnevie T., Zaghloul K.A. The subthalamic nucleus: unravelling new roles and mechanisms in the control of action. Neuroscientist 2019;25(1):48–64. DOI: 10.1177/1073858418763594.

68. Tisch S., Zrinzo L., Limousin P. et al. Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 2007;78(12):1314–9. DOI: 10.1136/jnnp.2006.109694.

69. Jahanshahi A., Schönfeld L.M., Lemmens E. et al. In vitro and in vivo neuronal electrotaxis: a potential mechanism for restoration? Mol Neurobiol 2014;49(2):1005–16. DOI: 10.1007/s12035-013-8575-7.


Для цитирования:


Залялова З.А. Глубокая стимуляция головного мозга. Каким образом она контролирует движения при болезни Паркинсона? Нейрохирургия. 2019;21(3):93-99. https://doi.org/10.17650/1683-3295-2019-21-3-93-99

For citation:


Zalyalova Z.A. Deep brain stimulation. How it controls movements in Parkinson’s disease? Russian journal of neurosurgery. 2019;21(3):93-99. (In Russ.) https://doi.org/10.17650/1683-3295-2019-21-3-93-99

Просмотров: 398


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)