The antibodies to glutamate receptors as potential biomarkers for the spinal cord injury
https://doi.org/10.17650/1683-3295-2020-22-2-41-48
Abstract
Background. Inflammatory reactions, neurotoxicity cascade and secondary ischemia are aftermath of spinal cord injury. The neurotoxicity biomarkers can help to assess severity of injury.
The study objective is to detect level of the potential biomarkers of neurotoxicity and neuroinflammation — antibodies to glutamate receptors in blood serum of patients with spinal cord injury in comparison with standard diagnostic data.
Materials and methods. We enrolled 17 patients with spinal cord injury, 10 patients with uncomplicated spine trauma, and 15 healthy volunteers. All participants underwent a neurological examination on the scale of the American Spinal Injury Association and 1.5 Т magnetic resonance imaging (MRI) of the spinal cord. The concentration of antibodies to ionotropic glutamate receptors (NR2A NMDA-recep-tors, AMPA/kainate receptors) were measured by enzyme-linked immunosorbent assay. The results were compared with the size of the lesion according to MRI data and a neurological scale.
Results. The concentration of AMPA/kainate antibodies in patients with spinal cord injury were increased (p = 0,006 andp = 0,01 respectively) compared to controls and those with uncomplicated spine trauma. We observed a direct correlation (r = 0.57, p <0,05) between the concentration of antibodies to the kainate receptor and the size of the lesion (hyperintensive signal) according to MRI.
Conclusion. The results shows the potential effectiveness of the neurotoxicity biomarkers and the significant role of the antibodies to glutamate receptors in the diagnosis of spinal cord injury.
About the Authors
G. V. PonomarevRussian Federation
6—8 Lva Tolstogo St., Saint Petersburg 197022
S. A. Dambinova
Russian Federation
Bld. 2, 8 Trubetskaya St., Moscow 119991
T. A. Skoromets
Russian Federation
6—8 Lva Tolstogo St., Saint Petersburg 197022
A. A. Skoromets
Russian Federation
6—8 Lva Tolstogo St., Saint Petersburg 197022
References
1. Yang C., Yu B., Ma F. et al. What is the optimal sequence of decompression for multilevel noncontinuous spinal cord compression injuries in rabbits? BMC Neurol 2017;17(1):44. DOI: 10.1186/s12883-017-0824-3.
2. Evaniew N., Belley-Cote E.P., Fallah N. et al. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a systematic review and meta-analysis. J Neurotrauma 2016;33(5):468—81. DOI: 10.1055/s-0036-1582910.
3. Brinkhof M.W., Al-Khodairy A., Eriks-Hoogland I. et al. Health conditions in people with spinal cord injury: contemporary evidence from a population-based community survey in Switzerland. J Rehabil Med 2016;48(2):197—209. DOI: 10.2340/16501977-2039.
4. Jutzeler C.R., Huber E., Callaghan M.F. et al. Association of pain and CNS structural changes after spinal cord injury. Sci Rep 2016;6:18534. DOI: 10.1038/srep18534.
5. Grundy D., Swain A. ABC of spinal cord injury. Transl. from English. Moscow: Binom, 2008. (In Russ.).
6. Spinal cord injury (SCI) facts and figures at a glance. J Spinal Cord Med 2016;39(2):243—4. DOI: 10.1080/10790268.2016.1160676.
7. Gomes-Osman J., Cortes M., Guest J., Pascual-Leone A. A systematic review of experimental strategies aimed at improving motor function after acute and chronic spinal cord injury. J Neurotrauma 2016;33(5):425—38. DOI: 10.1089/neu.2014.3812.
8. Round A.M., Park S.E., Walden K. et al. An evaluation of the International Standards to Document Remaining Autonomic Function after Spinal Cord Injury: input from the international community. Spinal Cord 2017;55(2):198—203. DOI: 10.1038/sc.2016.152.
9. Gross-Hemmi M.H., Post M.W., Ehrmann C. et al. Study protocol of the International Spinal Cord Injury (InSCI) Community Survey. Am J Phys Med Rehabil 2017;96(2 Suppl 1):S23—34. DOI: 10.1097/phm.0000000000000647.
10. Vissarionov S.V., Baindurashvili A.G., Kryukova I.A. International standards for neurological classification of spinal cord injuries (ASIA/ISNCSCI scale, revised 2015). Ortopediya, travmatologiya i vosstanovitelnaya khirurgiya detskogo vozrasta = Pediatric Traumatology, Orthopaedics and Reconstructive Surgery 2016;4(2):67—72. (In Russ.). DOI: 10.17816/ptors4267-72.
11. Krylov V.V., Grin A.A., Lutsik A.A. et al. Recommended protocol for treating complicated and uncomplicated acute spinal injury in adults (Association of Neurosurgeons of Russia). Part 2. Zhurnal “Voprosy neyrokhirurgii” im. N.N. Burdenko = Problems of neurosurgery n. a. N.N. Burdenko 2015;79(1):83—9. (In Russ.). DOI: 10.17116/neiro201579183-89.
12. Pouw M.H., Hosman A.J., van Middendorp J.J. et al. Biomarkers in spinal cord injury. Spinal Cord 2009;47(7):519—25. DOI: 10.1038/sc.2008.176.
13. Chen Y., Tang Y., Allen V., DeVivo M.J. Fall-induced spinal cord injury: external causes and implications for prevention.J Spinal Cord Med 2016;39(1):24—31. DOI: 10.1016/j.apmr.2015.08.061.
14. Gazdic M., Volarevic V., Arsenijevic A. et al. Stem cells and labeling for spinal cord injury. Int J Mol Sci 2016;18(1):6. DOI: 10.3390/ijms18010006.
15. Larkin I.I., Larkin V.I., Sitko L.A. et al. Mechanisms of isolated spinal cord injury in children. Khirurgiya pozvonochnika = Spine Surgery 2016;13(2):18—23. (In Russ.). DOI: 10.14531/ss2016.2.18-23.
16. Gennarelli T., Dambinova S.A., Weissman J.D. Advances in diagnostics and treatment of neurotoxicity after sports-related injuries. In: Acute brain impairment: scientific discoveries and translational research. Ed. by P.V. Peplow, S.A. Dambinova, T.A. Gennarelli, B. Martinez. Cambridge: Royal Society of Chemistry, 2018. Pp. 141-162.
17. Biomarkers for traumatic brain injury. Ed. by S.A. Dambinova, R.L. Hayes, K.K. Wang. Cambridge: The Royal Society of Chemistry, 2012.
18. Dambinova S.A., Skoromets A.A., Skoromets A.P. Biomarkers of cerebral ischemia. Saint Petersburg, 2013. 334 p. (In Russ.).
19. Dambinova S.A., Maroon J.C., Sufrinko A.M. et al. Functional, structural, and neurotoxicity biomarkers in integrative assessment of concussions. Front Neurol 2016;7:172. DOI: 10.3389/fneur.2016.00172.
20. Sorokina E.G., Semenova Zh.B., Granstrem O.K. et al. S100B protein and autoantibodies to S100B protein in diagnostics of brain damage in craniocerebral trauma in children. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry 2010;110(8):30—5. (In Russ.).
21. Marchi N., Bazarian J.J., Puvenna V. et al. Consequences of repeated blood- brain barrier disruption in football players. PloS One 2013;8(3):e56805. DOI: 10.1371/journal.pone.0056805.
22. Anwar M.A., Al Shehabi T.S., Eid A.H. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 2016;10:98. DOI: 10.3389/fncel.2016.00098.
23. Gurcan O., Gurcay A.G., Kazanci A. et al. Effect of Asiatic Acid on the treatment of spinal cord injury: an experimental study in rats. Turk Neurosurg 2017;27(2):259—64. DOI: 10.5137/1019-5149.JTN.15747-15.2.
24. Figley S.A., Khosravi R., Legasto J.M. et al. Characterization of vascular disruption and blood — spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 2014;31(6):541—52. DOI: 10.1089/neu.2013.3034.
25. Hulme C.H., Brown S.J., Fuller H.R. et al. The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord 2017;55(2):114—25. DOI: 10.1038/sc.2016.174.
26. Hergenroeder G.W., Moore A.N., Schmitt K.M. et al. Identification of autoantibodies to glial fibrillary acidic protein in spinal cord injury patients. Neuroreport 2016;27(2):90—3. DOI: 10.1097/wnr.0000000000000502.
27. Ponomarev G.V., Dambinova S.A., Skoromets A.A. Neurotoxicity in spinal cord impairments. In: Acute brain impairment: scientific discoveries and translational research. Ed. by: P.V. Peplow, S.A. Dambinova, T.A. Gennarelli, B. Martinez. Cambridge: Royal Society of Chemistry, 2018. Pp. 198—214.
Review
For citations:
Ponomarev G.V., Dambinova S.A., Skoromets T.A., Skoromets A.A. The antibodies to glutamate receptors as potential biomarkers for the spinal cord injury. Russian journal of neurosurgery. 2020;22(2):41-48. (In Russ.) https://doi.org/10.17650/1683-3295-2020-22-2-41-48