Регенеративные методы лечения травмы спинного мозга. Обзор литературы. Часть 3
https://doi.org/10.17650/1683-3295-2019-21-4-97-103
Аннотация
Проблема лечения травматических повреждений спинного мозга – одна из наиболее сложных и актуальных для современной медицины. В подавляющем большинстве случаев травма спинного мозга (ТСМ) приводит к стойкой инвалидизации пациентов, что имеет как медико-социальные, так и экономические последствия для пациента, его семьи и государства. Современные методы лечения ТСМ обладают крайне ограниченной эффективностью и не позволяют в достаточной степени восстановить утраченные функции центральной нервной системы. Регенеративные методы и, в частности, клеточная терапия – очень многообещающее направление, дающее надежду на эффективное лечение ТСМ. В обзоре освещены проблемы эпидемиологии и патогенеза ТСМ, описаны существующие методы терапии, а также перспективные методы регенеративной терапии. Особое внимание уделено результатам доклинических и клинических исследований в области клеточной терапии. Обзор разделен на 4 части. В 3-й части продолжается описание методов клеточной терапии.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Ключевые слова
Об авторах
В. А. СмирновРоссия
Владимир Александрович Смирнов
обзор публикаций по теме статьи, написание текста статьи
А. А. Гринь
Россия
обзор публикаций по теме статьи, написание текста статьи
Список литературы
1. Gage F.H. Mammalian neural stem cells. Science 2000;287(5457):1433–8. DOI: 10.1126/science.287.5457.1433.
2. Lu P., Jones L.L., Snyder E.Y., Tuszynski M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003;181(2):115–29. DOI: 10.1016/s0014-4886(03)00037-2.
3. Cao Q.-L., Zhang Y.P., Howard R.M. et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 2001;167(1):48–58. DOI: 10.1006/exnr.2000.7536.
4. Shihabuddin L.S., Horner P.J., Ray J., Gage F.H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000;20(23):8727–35.
5. Bottai D., Madaschi L., Di Giulio A.M., Gorio A. Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med 2008;14(9–10): 634–44. DOI: 10.2119/2008-00077. Bottai.
6. Hofstetter C.P., Holmström N.A., Lilja J.A. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005;8(3):346–53. DOI: 10.1038/nn1405.
7. Okada S., Ishii K., Yamane J. et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 2005;19(13):1839–41. DOI: 10.1096/fj.05-4082fje.
8. Parr A.M., Kulbatski I., Zahir T. et al. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 2008;155(3):760–70. DOI: 10.1016/j.neuroscience. 2008.05.042.
9. Pfeifer K., Vroemen M., Blesch A., Weidner N. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur J Neurosci 2004;20(7):1695–704. DOI: 10.1111/j.1460-9568.2004.03657.x.
10. Von Euler M., Sundström E., Seiger A. Morphological characterization of the evolving rat spinal cord injury after photochemically induced ischemia. Acta Neuropathol 1997;94(3):232–9. DOI: 10.1007/s004010050698.
11. Lepore A.C., Fischer I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol 2005;194(1):230–42. DOI: 10.1016/j.expneurol.2005.02.020.
12. Mitsui T., Shumsky J.S., Lepore A.C. et al. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci 2005;25(42): 9624–36. DOI: 10.1523/ JNEUROSCI.2175-05.2005.
13. Setoguchi T., Nakashima K., Takizawa T. et al. Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp Neurol 2004;189(1):33–44. DOI: 10.1016/j.expneurol.2003.12.007.
14. Enzmann G.U., Benton R.L., Woock J.P. et al. Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol 2005; 195(2):293–304. DOI: 10.1016/j.expneurol.2005.04.021.
15. Hutton J.F., Gargett T., Sadlon T.J. et al. Development of CD4+CD25+FoxP3+ regulatory T cells from cord blood hematopoietic progenitor cells. J Leukoc Biol 2009;85(3):445–51. DOI: 10.1189/jlb.1008620.
16. Ziv Y., Avidan H., Pluchino S. et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 2006;103(35):13174–9. DOI: 10.1073/pnas.0603747103.
17. Tarasenko Y.I., Gao J., Nie L. et al. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 2007;85(1): 47–57. DOI: 10.1002/jnr.21098.
18. Cummings B.J., Uchida N., Tamaki S.J., Anderson A.J. Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol Res 2006;28(5):474–81. DOI: 10.1179/016164106X115116.
19. Iwanami A., Kaneko S., Nakamura M. et al. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 2005;80(2):182–90. DOI: 10.1002/jnr.20436.
20. Wu P., Tarasenko Y.I., Gu Y. et al. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 2002;5(12):1271–8. DOI: 10.1038/nn974.
21. Teng Y.D., Lavik E.B., Qu X. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002;99(5):3024–9. DOI: 10.1073/pnas.052678899.
22. Fehlings M., Vawda R. Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics 2011;8(4):704–20. DOI: 10.1007/s13311-011-0076-7.
23. Friedenstein A.J., Petrakova K.V., Kurolesova A.I., Frolova G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6(2):230–47.
24. Brazelton T.R., Rossi F.M., Keshet G.I., Blau H.M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290(5497):1775–9. DOI: 10.1126/science.290.5497.1775.
25. Mezey E., Chandross K.J., Harta G. et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290(5497):1779–82. DOI: 10.1126/science.290.5497.1779.
26. Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61(4):364–70. DOI: 10.1002/1097-4547(20000815)61: 43.0.CO;2-C.
27. Castro R.F., Jackson K.A., Goodell M.A. et al. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 2002;297(5585):1299. DOI: 10.1126/science.297.5585.1299.
28. Terada N., Hamazaki T., Oka M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416(6880);542–5. DOI: 10.1038/nature730.
29. Wurmser A.E., Gage F.H. Stem cells: cell fusion causes confusion. Nature 2002;416(6880):485–7. DOI: 10.1038/416485a.
30. Fraga J.S., Silva N.A., Lourenço A.S. et al. Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie 2013;95(12):2297–303. DOI: 10.1016/j.biochi.2013.06.028.
31. Kern S., Eichler H., Stoeve J. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24(5):1294–301. DOI: 10.1634/stemcells.2005-0342.
32. La Rocca G., Anzalone R., Corrao S. et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 2009;131(2):267–82. DOI: 10.1007/s00418-008-0519-3.
33. Troyer D.L., Weiss M.L. Wharton’s jellyderived cells are a primitive stromal cell population. Stem Cells 2008;26(3):591–9. DOI: 10.1634/stemcells.2007-0439.
34. Tetzlaff W., Okon E.B., KarimiAbdolrezaee S. et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2010;28(8):1611–82. DOI: 10.1089/neu.2009.1177.
35. Ohta M., Suzuki Y., Noda T. et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 2004;187(2):266–78. DOI: 10.1016/j.expneurol.2004.01.021.
36. Urdzíková L., Jendelová P., Glogarová K. et al. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma 2006;23(9):1379–91. DOI: 10.1089/neu.2006.23.1379.
37. Deng Y.B., Liu Y., Zhu W.B. et al. The cotransplantation of human bone marrow stromal cells and embryo olfactory ensheathing cells as a new approach to treat spinal cord injury in a rat model. Cytotherapy 2008;10(6):551–64. DOI: 10.1080/14653240802165673.
38. Zurita M., Vaquero J. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neurosci Lett 2006;402(1–2):51–6. DOI: 10.1016/j.neulet.2006.03.069.
39. Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor ratingscale for open-field testing in rats. J Neurotrauma 1995;12(1):1–21. DOI: 10.1089/neu.1995.12.1.
40. Deng C., Gorrie C., Hayward I. et al. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord. J Neurosci Res 2006;83(7):1201–12. DOI: 10.1002/jnr.20817.
41. Ribeiro C.A., Salgado A.J., Fraga J.S. et al. The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). J Tissue Eng Regen Med 2001;5(8):668–72. DOI: 10.1002/term.365.
42. Geffner L.F., Santacruz P., Izurieta M. et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 2008;17(12):1277–93. DOI: 10.3727/096368908787648074.
43. Sun J.M., Song A.W., Case L.E. et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, placebo-controlled trial. Stem Cells Transl Med 2017;6(12):2071–8. DOI: 10.1002/sctm.17-0102.
44. Yoon S.H., Shim Y.S., Park Y.H. et al. Complete spinal cord injury treatment using autologous bone marrow cell transplant and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007;25(8):2066–73. DOI: 10.1634/stemcells.2006-0807.
45. Doucette R. PNS-CNS transitional zone of the first cranial nerve. J Comp Neurol 1991;312(3):451–66. DOI: 10.1002/cne.903120311.
46. Féron F., Perry C., Cochrane J. et al. Autologous olfactory ensheathing cell transplant in human spinal cord injury. Brain 2005;128(Pt 12):2951–60. DOI: 10.1093/brain/awh657.
47. Lima C., Pratas-Vital J., Escada P. et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 2006;29(3):191–203. DOI: 10.1080/10790268.2006.11753874.
48. Ramón-Cueto A., Plant G.W., Avila J., Bunge M.B. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 1998;18(10):3803–15.
49. Keyvan-Fouladi N., Raisman G., Li Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci 2003;23(28):9428–34.
50. Ramer L.M., Richter M.W., Roskams A.J. et al. Peripherally-derived olfactory ensheathing cells do not promote primary afferent regeneration following dorsal root injury. Glia 2004;47(2):189–206. DOI: 10.1002/glia.20054.
51. Steward O., Sharp K., Selvan G. et al. A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats. Exp Neurol 2006;198(2):483–99. DOI: 10.1016/j.expneurol.2005.12.034.
52. Takami T., Oudega M., Bates M.L. et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 2002;22(15):6670–81. DOI: 20026636.
53. Boruch A.V., Conners J.J., Pipitone M. et al. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 2001;33(3):225–9.
54. Oudega M., Xu X.-M. Schwann cell transplant for repair of the adult spinal cord. J Neurotrauma 2006;23(3–4):453–67. DOI: 10.1089/neu.2006.23.453.
55. Chernousov M.A., Carey D.J. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 2000;15(2):593–601. DOI: 10.14670/HH-15.593.
56. Duncan I.D., Aguayo A.J., Bunge R.P., Wood P.M. Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 1981;49:241–52. DOI: 10.1016/0022-510x(81)90082-4.
57. Bunge M.B. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med 2008;31(3):262–9. DOI: 10.1080/10790268.2008.11760720.
58. Hicks S.P., D’Amato C.J. Motor-sensory cortex-corticospinal system and developing locomotion and placing in rats. Am J Anat 1975;143(1):1–42. DOI: 10.1002/aja.1001430102.
59. Biernaskie J., Sparling J.S., Liu J. et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci 2007;27(36):9545–59. DOI: 10.1523/JNEUROSCI.1930- 07.2007.
60. Kanda J. [Impact of HLA mismatch on transplant outcomes (In Japanese)]. Rinsho Ketsueki 2017;58(12):2415–24. DOI: 10.11406/rinketsu.58.2415.
61. Shields S.A., Blakemore W.F., Franklin R.J. Schwann cell remyelination is restricted to astrocyte-deficient areas after transplantation into demyelinated adult rat brain. J Neurosci Res 2000;60(5):571–8. DOI: 10.1002/ (SICI)1097-4547(20000601)60: 53.0.CO;2-Q.
62. Keyvan-Fouladi N., Raisman G., Li Y. Delayed repair of corticospinal tract lesions as an assay for the effectiveness of transplantation of Schwann cells. Glia 2005;51(4):306–11. DOI: 10.1002/glia.20211.
63. Pinzon A., Calancie B., Oudega M., Noga B.R. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 2001;64(5):533–41. DOI: 10.1002/jnr.1105.
64. Chau C.H., Shum D.K., Li H. et al. Chondroitinase ABC enhances axonal regrowth through Schwann cell-seeded guidance channels after spinal cord injury. FASEB J 2004;18(1):194–6. DOI: 10.1096/fj.03-0196fje.
65. Saberi H., Moshayedi P., Aghayan H.-R. et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplant: an interim report on safety considerations and possible outcomes. Neurosci Lett 2008;443(1):46–50. DOI: 10.1016/j.neulet.2008.07.041.
66. Halfpenny C., Benn T., Scolding N. Cell transplant, myelin repair, and multiple sclerosis. Lancet Neurol 2002;1(1):31–40. DOI: 10.1016/s1474-4422(02)00004-2.
Рецензия
Для цитирования:
Смирнов В.А., Гринь А.А. Регенеративные методы лечения травмы спинного мозга. Обзор литературы. Часть 3. Нейрохирургия. 2019;21(4):97-103. https://doi.org/10.17650/1683-3295-2019-21-4-97-103
For citation:
Smirnov V.A., Grin A.A. Regenerative treatment of spinal cord injury. Literature review. Part 3. Russian journal of neurosurgery. 2019;21(4):97-103. (In Russ.) https://doi.org/10.17650/1683-3295-2019-21-4-97-103