Preview

Нейрохирургия

Расширенный поиск

РЕГЕНЕРАТИВНЫЕ МЕТОДЫ ЛЕЧЕНИЯ ТРАВМЫ СПИННОГО МОЗГА. ОБЗОР ЛИТЕРАТУРЫ. ЧАСТЬ 1

https://doi.org/10.17650/1683-3295-2019-21-2-66-75

Аннотация

Проблема лечения травматических повреждений спинного мозга – одна из наиболее сложных и актуальных в современной медицине. В подавляющем большинстве случаев травма спинного мозга (ТСМ) приводит к стойкой инвалидизации пациентов, что имеет как медико-социальные, так и экономические последствия для пациента, его семьи и государства. Современные методы лечения ТСМ обладают крайне ограниченной эффективностью и не позволяют в достаточной степени восстановить утраченные функции центральной нервной системы. Регенеративные методы и, в частности, клеточная терапия – очень многообещающее направление, дающее надежду на эффективное лечение ТСМ. В обзоре освещены проблемы эпидемиологии и патогенеза ТСМ, описаны существующие методы терапии, а также перспективные методы регенеративной терапии. Особое внимание уделено результатам доклинических и клинических исследований в области клеточной терапии. Обзор разделен на 4 части. В 1-й части освещаются эпидемиология и патогенез ТСМ, а также хирургические, физические, фармакологические методы ее лечения.

Об авторах

В. А. Смирнов
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента здравоохранения г. Москвы»
Россия
129090 Москва, Большая Сухаревская пл., 3


А. А. Гринь
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента здравоохранения г. Москвы»; ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

129090 Москва, Большая Сухаревская пл., 3;

127473 Москва, ул. Делегатская, 20, стр. 1



В. В. Крылов
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента здравоохранения г. Москвы»; ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия

129090 Москва, Большая Сухаревская пл., 3;

127473 Москва, ул. Делегатская, 20, стр. 1



Список литературы

1. Бабиченко Е.И. Травматическая болезнь спинного мозга. В кн.: Нейротравматология. Под ред. А.Н. Коновалова, Л.Б. Лихтермана, А.А. Потапова. М.: Вазар-Ферро, 1994. С. 292–294. [Babichenko E.I. Traumatic disease of the spinal cord. In: Neurotraumatology. Ed. by A.N. Konovalov, L.B. Likhterman, A.A. Potapov. Moscow: Vasar-Ferro, 1994. Pp. 292–294. (In Russ.)].

2. Исаев А.А., Мелихова В.С. Применение клеток пуповинной крови в клинической практике. Клеточная трансплантология и тканевая инженерия 2008;3(1):34–43. [Isaev A.A., Melihova V.S. The use of cord blood stem cells in clinical practice. Kletochnaya transplantologiya i tkanevaya inzheneriya = Cellular Transplantation and Tissue Engineering 2008;3(1):34–43. (In Russ.)].

3. Крылов В.В., Гринь А.А., Луцик А.А. и др. Клинические рекомендации по лечению острой осложненной и неосложненной травмы позвоночника у взрослых. Н. Новгород, 2013. 43 с. [Krylov V.V., Grin A.A., Lutsik A.A. et al. Clinical guidelines for the treatment of acute complicated and uncomplicated spine injuries in adults. Nizhny Novgorod, 2013. 43 p. (In Russ.)].

4. Furlan J.C., Fehlings M.G. The impact of age on mortality impairment and disability among adults with acute traumatic spinal cord injury. J Neurotrauma 2009;26(10):1707–17. DOI: 10.1089/neu.2009.0888.

5. Крылов В.В., Гринь А.А. Травма позвоночника и спинного мозга. М.: ПринтСтудио, 2014. 420 с. [Krylov V.V., Grin A.A. Trauma of the spine and spinal cord. Moscow: Print-Studio, 2014. 420 p. (In Russ.)].

6. Dobkin B.H., Havton L.A. Basic advances and new avenues in therapy of spinal cord injury. Annu Rev Med 2004;55:255–82. DOI: 10.1146/annurev. med.55.091902.104338.

7. Noonan V.K., Fingas M., Farry A. The incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology 2012;38(4): 219–26. DOI: 10.1159/000336014.

8. The National Spinal Cord Injury Statistical Center(2010). Spinal cord injury facts and figures at a glance. Available at: https://www.nscisc.uab.edu/ public_content/pdf/Facts%20and%20 Figures%20at%20a% 20Glance%202010.pdf.

9. Pickett G.E., Campos-Benitez M., Keller J.L., Duggal N. Epidemiology of traumatic spinal cord injury in USA and Canada. Spine(Phila Pa 1976) 2006;31(7):799–805. DOI: 10.1097/01. brs.0000207258.80129.03.

10. Chen Y., Tang Y., Vogel L.C., Devivo M.J. Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 2013;19(1):1–8. DOI: 10.1310/sci1901-1.

11. Garcia-Altés A., Pérez K., Novoa A. et al. Spinal cord injury and traumatic brain injury: a cost-of-illness study. Neuroepidemiology 2012;39(2):103–8. DOI: 10.1159/000338297.

12. Park D.H., Lee J.H., Borlongan C.V. et al. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 2011;7(1):181–94. DOI: 10.1007/s12015-010-9163-0.

13. Silva N.A., Sousa N., Reis R.L., Salgado A.J. From basics to clinical: a comprehensice review on spinal cord injury. Prog Neurobiol 2014;114:25–57. DOI: 10.1016/j.pneurobio.2013.11.002.

14. McDonald J.W., Sadowsky C. Spinal-cord injury. Lancet 2002;359(9304):417–25. DOI: 10.1016/S0140-6736(02)07603-1.

15. Rowland J.W., Hawryluk G.W., Kwon B., Fehlings M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25(2):E2. DOI: 10.3171/FOC.2008.25.11.E2.

16. DeVivo M.J., Go B.K., Jackson A.B. Overview of the National Spinal Cord Injury Statistical Center database. J Spinal Cord Med 2002;25(4):335–8.

17. Dougherty K.J., Hochman S. Spinal cord injury causes plasticity in a subpopulation of lamina I GABAergic interneurons. J Neurophysiol 2008;100(1):212–23. DOI: 10.1152/jn.01104.2007.

18. Gris P., Tighe A., Levin D. et al. Transcriptional regulation of scar gene expression in primary astrocytes. Glia 2007;55(11):1145–55. DOI: 10.1002/glia.20537.

19. Gros T., Sakamoto J.S., Tuszynski M.H. et al. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials 2010;31(26):6719–29. DOI: 10.1016/j.biomaterials.2010.04.035.

20. Auerbach A.D. Liu Q., Ghosh R. et al. Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion 1990;30(8):682–7.

21. Beattie M.S., Hermann G.E., Rogers R.C., Bresnahan J.C. Cell death in models of spinal cord injury. Prog Brain Res 2002;137:37–47.

22. Casha S., Yu W.R., Fehlings M.G. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001;103(1):203–18.

23. Gil J.E., Woo D.H., Shim J.H. et al. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Lett 2009;583(3):561–7. DOI: 10.1016/j.febslet.2008.12.061.

24. Hall E.D., Springer J.E. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 2004;1(1):80–100. DOI: 10.1602/neurorx.1.1.80.

25. Pineau I., Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007;500(2): 267–85. DOI: 10.1002/cne.21149.

26. Fehlings M.G., Vaccaro A., Wilson J.R. et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 2012;7(2):320–37. DOI: 10.1371/journal.pone.0032037.

27. Bansal H., Verma P., Agrawal A. et al. Autologous bone marrow-derived stem cells in spinal cord injury. J Stem Cells 2016;11(1):51–61.

28. Cristante A.F., Torelli A.G., Kohlmann R.B. et al. Feasibility of intralaminar, lateral mass, or pedicle axisvertebra screws in children under 10 years of age: a tomographic study. Neurosurgery 2012;70(4):835–9. DOI: 10.1227/NEU.0b013e3182367417.

29. Damasceno M.L., Letaif O.B., Cristante A.F., Oliveira R.P. Retrospective results analysis of the use of cranial fractures halo subaxial dislocations. Coluna (Columna) 2010;9(4):376–80.

30. Janssen L., Hansebout R.R. Pathogenesis of spinal cord injury and newer treatments. A review. Spine (Phila Pa 1976) 1989;14(1):23–32.

31. Letaif O.B., Damasceno M.L., Cristante A.F. et al. The choice of surgical approach for treatment of cervical fractures. Coluna (Columna) 2010;9(4):358–62.

32. Netto C.C., Cristante A.F., Barros Filho T.E.P. et al. Effects of decompression time after spinal cord injury on neurologic recovery in Wistar rats. Acta Ortop Bras 2010;18(6):315–20.

33. Vaccaro A.R., Daugherty R.J. Sheehan T.P. et al. Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine (Phila Pa 1976) 1997;22(22):2609–13.

34. Van Middendorp J.J., Barbagallo G., Schuetz M., Hosman A.J. Design and rationale of a Prospective, Observational European Multicenter study on the efficacy of acute surgical decompression after traumatic Spinal Cord Injury: the SCI-POEM study Spinal Cord 2012; 50(9):686–94. DOI: 10.1038/sc.2012.34.

35. Лившиц А.В. Хирургия спинного мозга. М., 1990. 350 c. [Livshits V.A. Surgery of the spinal cord. Moscow, 1990. 350 p. (In Russ.)].

36. Zhang J., Wang H., Zhang C., Li W. Intrathecal decompression versus epidural decompression in the treatment of severe spinal cord injury in rat model: a randomized controlled preclinical study. J Orthop Surg Res 2016;11:34. DOI: 10.1186/s13018-016-0369-y.

37. Thibault-Halman G., Rivers C.S., Bailey C.S. et al. Predicting recruitment feasibility for acute spinal cord injury clinical trials in Canada using national registry data. J Neurotrauma 2017;34(3):599–606. DOI: 10.1089/neu.2016.4568.

38. Wutte C., Klein B., Becker J. et al. Earlier decompression (<8 hours) results in better neurological and functional outcome after traumatic thoracolumbar spinal cord injury. J Neurotrauma 2019 Jan 25. DOI: 10.1089/neu.2018.6146.

39. Koffler J., Samara R.F., Rosenzweig E.S. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury. Methods Mol Biol 2014;1162:157–65. DOI: 10.1007/978-1-4939-0777-9_13.

40. Ropper A.E., Thakor D.K., Han I. et al. Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation. Proc Natl Acad Sci USA 2017;114(5):E820–9. DOI: 10.1073/pnas.1616340114.

41. Xiao Z. Tang F., Tang J. et al. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 2016;59(7):647–55. DOI: 10.1007/s11427-016-5080-z.

42. Kay E.D., Deutsch A., Wuermser L.A. Predicting walking at discharge from inpatient rehabilitation after a traumatic spinal cord injury. Arch Phys Med Rehabil 2007;88(6):745–50. DOI: 10.1016/j.apmr.2007.03.013.

43. Kubinová Š., Horák D., Hejčl A. et al. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J Tissue Eng Regen Med 2015;9(11):1298–309. DOI: 10.1002/term.1694.

44. Tysseling-Mattiace V.M., Sahni V., Niece K.L. et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 2008;28(14):3814–23. DOI: 10.1523/JNEUROSCI. 0143-08.2008.

45. Tysseling V.M., Sahni V., Pashuck E.T. et al. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res 2010;88(14):3161–70. DOI: 10.1002/jnr.22472.

46. Albin M.S., White R.J. Epidemiology, physiopathology, and experimental therapeutics of acute spinal cord injury. Crit Care Clin 1987;3(3):441–52.

47. Schwab M.E., Brösamle C. Regeneration of lesioned corticospinal tract fibers in the adult rat spinal cord under experimental conditions. Spinal Cord 1997;35(7):469–73.

48. Sedý J., Urdzíková L., Jendelová P., Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 2008;32(3):550–80. DOI: 10.1016/j.neubiorev.2007.10.001.

49. Cristante A.F., Damasceno M.L., Barros Filho T.E. et al. Evaluation of the effects of hyperbaric oxygen therapy for spinal cord lesion in correlation with the moment of intervention. Spinal Cord 2012;50(7): 502–6. DOI: 10.1038/sc.2012.16.

50. Gale K., Kerasidis H., Wrathall J.R. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol 1985;88(1):123–34.

51. Kelly D.L. Jr, Lassiter K.R., Vongsvivut A., Smith J.M. Effects of hyperbaric oxygenation and tissue oxygen studies in experimental paraplegia. J Neurosurg 1972;36(4):425–9. DOI: 10.3171/jns.1972.36.4.0425.

52. Botelho R.V., Daniel J.W., Boulosa J.L. et al. [Effectiveness of methylprednisolone in the acute phase of spinal cord injuries: a systematic review of randomized controlled trials (In Portuguese)]. Rev Assoc Med Bras (1992) 2009;55(6):729–37.

53. Bracken M.B., Shepard M.J., Hellenbrand K.G. et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13. DOI: 10.3171/jns.1985.63.5.0704.

54. Bracken M.B., Shepard M.J., Collins W.F. Jr et al. Methylprednisolone or naloxene treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg 1992;76(1):23–31. DOI: 10.3171/jns.1992.76.1.0023.

55. Bracken M.B., Shepard M.J., Holford T.R. et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997;277(20):1597–604.

56. Harrop J.S., Maltenfort M.G., Geisler F.H. et al. Traumatic thoracic ASIA A examinations and potential for clinical trials. Spine (Phila Pa 1976) 2009;34(23):2525–9. DOI: 10.1097/BRS.0b013e3181bd1402.

57. Hurlbert R.J., Hadley M.N., Walters B.C. et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery 2015;76 Suppl 1:S71–83. DOI: 10.1227/01. neu.0000462080.04196.f7.

58. Marcon R.M., Barros Filho T.E.P., Oliveira R.P. et al. Experimental study on the action of methylprednisolone on Wistar rats before spinal cord injury. Acta Ortop Bras 2010;18(1):26–30.

59. Rogers W.K., Todd M. Acute spinal cord injury. Best Pract Res Clin Anaesthesiol 2016;30(1):27–39. DOI: 10.1016/j.bpa.2015.11.003.

60. Xu D., Yang L., Li Y., Sun Y. Clinical study of ganglioside (GM) combined with methylprednisolone (MP) for early acute spinal injury. Pak J Pharm Sci 2015;28(2 Suppl 2):701–4.

61. Evaniew N., Belley-Côté E.P., Fallah N. et al. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a systematic review and metaanalysis. J Neurotrauma 2016;33(5): 468–81. DOI: 10.1089/neu.2015.4192.

62. Evaniew N., Noonan V.K., Fallah N. et al. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a propensity score-matched cohort study from a Canadian Multi-Center Spinal Cord Injury Registry. J Neurotrauma 2015;32(21):1674–83. DOI: 10.1089/neu.2015.3963.

63. Fehlings M.G., Wilson J.R., Cho N. Methylprednisolone for the treatment of acute spinal cord injury: counterpoint. Neurosurgery 2014;61 Suppl 1:36–42. DOI: 10.1227/NEU.0000000000000412.

64. Kong X.Y., Gao J., Yang Y. et al. Research advances in the application of methylprednisolone in the treatment of acute spinal cord injury. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2014;36(6):680–5. DOI: 10.3881/j.issn.1000- 503X.2014.06.023.

65. Rosado I.R., Lavor M.S., Alves E.G. et al. Effects of methylprednisolone, dantrolene, and their combination on experimental spinal cord injury. Int J Clin Exp Pathol 2014;7(8):4617–26.

66. Hurlbert R.J. Methylprednisolone for the treatment of acute spinal cord injury: point. Neurosurgery 2014;61 Suppl 1:32–5. DOI: 10.1227/NEU.0000000000000393.

67. Hadley M.N., Walters B.C., Grabb P.A. et al. Guidelines for the management of acute cervical spine and spinal cord injuries. Clin Neurosurg 2002;49:407–98.

68. Walters B.C., Hadley M.N., Hurlbert R.J. et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurg 2013;60 Suppl 1:82–91. DOI: 10.1227/01. neu.0000430319.32247.7f.

69. Readdy W.J., Chan A.K., Matijakovich D.J., Dhall S.D. A review and update on the guidelines for the acute non-operative management of cervical spinal cord injury. J Neurosurg Sci 2015;59(2):119–28.

70. Domingo A., Al-Yahya A.A., Asiri Y. et al.; Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the effects of pharmacological agents on walking function in people with spinal cord injury. J Neurotrauma 2012;29(5):865–79. DOI: 10.1089/neu.2011.2052.

71. Kopp M.A., Liebscher T., Watzlawick R. et al. SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open 2016;6(7):e010651. DOI: 10.1136/bmjopen-2015-010651.

72. Lynch M., Duffell L., Sandhu M. et al. Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: a pilot study. J Spinal Cord Med 2017;40(3):295–303. DOI: 10.1080/10790268.2016.1142137.

73. Waters R.L., Adkins R., Yakura J., Vigil D. Prediction of ambulatory performance based on motor scores derived from standards of the American Spinal Injury Association. Arch Phys Med Rehabil 1994;75(7):756–60.

74. Kopp M.A., Liebscher T., Niedeggen A. et al. Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res 2012;349(1):119–32. DOI: 10.1007/s00441-012-1334-7.

75. Redondo-Castro E., Navarro X. Chronic ibuprofen administration reduces neuropathic pain but does not exert neuroprotection after spinal cord injury in adult rats. Exp Neurol 2014;252:95–103. DOI: 10.1016/j.expneurol.2013.11.008.

76. Sharp K.G., Yee K.M., Stiles T.L. et al. A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury. Exp Neurol 2013;248:321–37. DOI: 10.1016/j.expneurol.2013.06.023.

77. Streijger F., Lee J.H., Duncan G.J. et al. Combinatorial treatment of acute spinal cord injury with ghrelin, ibuprofen, C16, and ketogenic diet does not result in improved histologic or functional outcome. J Neurosci Res 2014;92(7): 870–83. DOI: 10.1002/jnr.23372.

78. Carvalho M.O., Barros Filho T.E., Tebet M.A. Effects of methylprednisolone and ganglioside GM-1 on a spinal lesion: a functional analysis. Clinics (Sao Paulo) 2008;63(3):375–80.

79. Liang Y., Ji J., Lin Y. et al. The ganglioside GM-1 inhibits bupivacaine-induced neurotoxicity in mouse neuroblastoma Neuro2a cells. Cell Biochem Funct 2016;34(6):455–62. DOI: 10.1002/cbf.3208.

80. Marcon R.M., Cristante A.F, de Barros Filho T.E. et al. Potentializing the effects of GM1 by hyperbaric oxygen therapy in acute experimental spinal cord lesion in rats. Spinal Cord 2010;48(11):808–13. DOI: 10.1038/sc.2010.37.

81. Zhai H.W., Gong Z.K., Sun J. et al. Ganglioside with nerve growth factor for the recovery of extremity function following spinal cord injury and somatosensory evoked potential. Eur Rev Med Pharmacol Sci 2015;19(12):2282–6.

82. Hachem L.D., Mothe A.J., Tator C.H. Evaluation of the effects of riluzole on adult spinal cord-derived neural stem/ progenitor cells in vitro and in vivo. Int J Dev Neurosci 2015;47(Pt B):140–6. DOI: 10.1016/j.ijdevneu.2015.08.007.

83. Lin C.W., Chen B., Huang K.L. et al. Inhibition of autophagy by estradiol promotes locomotor recovery after spinal cord injury in rats. Neurosci Bull 2016;32(2):137–44. DOI: 10.1007/s12264-016-0017-x.

84. Pannu R., Barbosa E., Singh A.K., Singh I. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 2005;79(3):340–50. DOI: 10.1002/jnr.20345.

85. Pannu R., Christie D.K., Barbosa E. et al. Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 2007;101(1):182–200. DOI: 10.1111/j.1471-4159.2006.04354.x.

86. Déry M.A., Rousseau G., Benderdour M., Beaumont E. Atorvastatin prevents early apoptosis after thoracic spinal cord contusion injury and promotes locomotion recovery. Neurosci Lett 2009;453(1):73–6. DOI: 10.1016/j.neulet.2009.01.062.

87. Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 1987;67(2):206–7.

88. Gorio A., Gokmen N., Erbayraktar S. et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 2002;99(14): 9450–5. DOI: 10.1073/pnas.142287899.

89. Huang H., Fan S., Ji X. et al. Recombinant human erythropoietin protects against experimental spinal cord trauma injury by regulating expression of the proteins MKP-1 and p-ERK. J Int Med Res 2009;37(2):511–9. DOI: 10.1177/147323000903700227.

90. Bouhy D., Ghasemlou N., Lively S. et al. Inhibition of the Ca2+-dependent K+ channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury. J Neurosci 2011;31(45):16298–308. DOI: 10.1523/JNEUROSCI.0047-11.2011.

91. Nehrt A., Rodgers R., Shapiro S. et al. The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience 2007;146(4):1504–12. DOI: 10.1016/j.neuroscience.2007.02.015.

92. Shi R., Sun W. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons. Neurosci Bull 2011;27(1):36–44. DOI: 10.1007/s12264-011-1048-y.

93. Hawryluk G.W., Rowland J., Kwon B.K., Fehlings M.G. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 2008;25(5):E14. DOI: 10.3171/FOC.2008.25.11.E14.

94. Jia Y.F., Gao H.L., Ma L.J., Li J. Effect of nimodipine on rat spinal cord injury. Genet Mol Res 2015;14(1):1269–76. DOI: 10.4238/2015.February.13.5.

95. Yu Z., Yu P., Chen H., Geller H.M. et al. Targeted inhibition of KCa3.1 attenuates TGF-β-induced reactive astrogliosis through the Smad2/3 signaling pathway. J Neurochem 2014;130(1):41–9. DOI: 10.1111/jnc.12710.

96. Marino R.J., Ditunno J.F. Jr, Donovan W.H., Maynard F. Jr. Neurologic recovery after traumatic spinal cord injury: data from the Model Spinal Cord Injury Systems. Arch Phys Med Rehabil 1999;80(11):1391–6.

97. Bracken M.B., Shepard M.J., Holford T.R. et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow-up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 1998;89(5):699–706. DOI: 10.3171/jns.1998.89.5.0699.

98. Bracken M.B., Holford T.R. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg 1993;79(4):500–7. DOI: 10.3171/jns.1993.79.4.0500.

99. Brackett N.L., Ibrahim E., Krassioukov A., Lynne C.M. Systemic naloxone infusion may trigger spasticity in patients with spinal cord injury: case series. J Spinal Cord Med 2007;30(3):272–5.

100. Lee J.Y., Kang S.R., Yune T.Y. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury. J Neurotrauma 2015;32(9):633–44. DOI: 10.1089/neu.2014.3527.

101. Lee B.A., Leiby B.E., Marino R.J. Neurological and functional recovery after thoracic spinal cord injury. J Spinal Cord Med 2016;39(1):67–76. DOI: 10.1179/2045772314Y.0000000280.

102. Scali M., Begenisic T., Mainardi M. et al. Fluoxetine treatment promotes functional recovery in a rat model of cervical spinal cord injury. Sci Rep 2013;3:221–7. DOI: 10.1038/srep02217.

103. Welling L.C., Welling M.S., Teixeira M.J., Figueiredo E.G. Fluoxetine and spinal cord injury: more pleiotropic effects? World Neurosurg 2016;86:17. DOI: 10.1016/j.wneu.2015.12.013.

104. Haller M.J., Wasserfall C.H., McGrail K.M. et al. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 2009;32(11):2041–6. DOI: 10.2337/dc09-0967.

105. Richards J.S., Bombardier C.H., Wilson C.S. et al. Efficacy of venlafaxine XR for the treatment of pain in patients with spinal cord injury and major depression: a randomized, controlled trial. Arch Phys Med Rehabil 2015;96(4):680–9. DOI: 10.1016/j.apmr.2014.11.024.


Рецензия

Для цитирования:


Смирнов В.А., Гринь А.А., Крылов В.В. РЕГЕНЕРАТИВНЫЕ МЕТОДЫ ЛЕЧЕНИЯ ТРАВМЫ СПИННОГО МОЗГА. ОБЗОР ЛИТЕРАТУРЫ. ЧАСТЬ 1. Нейрохирургия. 2019;21(2):66-75. https://doi.org/10.17650/1683-3295-2019-21-2-66-75

For citation:


Smirnov V.А., Grin А.А., Krylov V.V. REGENERATIVE TREATMENT OF SPINAL CORD INJURY. LITERATURE REVIEW. PART 1. Russian journal of neurosurgery. 2019;21(2):66-75. (In Russ.) https://doi.org/10.17650/1683-3295-2019-21-2-66-75

Просмотров: 1476


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X