Preoperative verification of histological type of meningeal tumors using magnetic resonance imaging data
Abstract
Introduction: Meningeal tumors present the large group of different mass lesion. This article describes meningiomas, hemangiopericytomas and various non-meningeal mesenchymal tumors. Preoperative verification of histological subtype and meningeal tumor density influences of treatment strategy selection and prognosis of surgical outcomes. Nowadays the analysis of these mass lesions is performed using various MRI methods.
Objective: to analyze the development algorithm of MRI images processing for preoperative verification of histological type and subtype of meningeal tumors .
Material and methods: We analyzed MRI data and histological final conclusion of 47 patients. Preoperative brain MRI performed using the following devices: GE Signa 1.5 T, Toshiba Excelart Vantage. 1.5 T, Toshiba Atlas — XGV, 1.5 T. Among all examined patients 31 patients had benign meningiomas (Grade I): 13 — meningotheliomatous subtype, 10 — fibroplastyc subtype and 8 — intermediate subtype. One patient had intermediate type of meningioma (atypical meningioma, GR ADE II), 6 patients had malignant type of meningiomas (GR ADE III), 6 others — hemangiopericytomas and 3 patients suffered from primary intracranial sarcomas.
Results: Sensitivity of algorithm for verification of fibroplastic and meningotheliomatous subtypes of meningiomas, anaplastic and atypical meningiomas including primary intracranial sarcomas and hemangiopericytomas consists of 91 — 94,2% for tomographs of various companies.
Conclusion: The developed algorithm with high sensitivity and specify verifies histological type and subtype of meningeal tumors while analyzing MR tomograms. However, the dislocation of histogram peaks intervals during processing of MRI images of tomographs of various companies required the following studies.
About the Authors
A. L. KrivoshapkinRussian Federation
G. S. Sergeev
Russian Federation
V. P. Kurbatov
Russian Federation
A. S. Gaitan
Russian Federation
A. R. Duishobaev
Russian Federation
S. M. Pyatov
Russian Federation
S. V. Mishinov
Russian Federation
L. E. Kal’neus
Russian Federation
A. A. Yanchenko
Russian Federation
A. M. Volkov
Russian Federation
References
1. Louis D.N., Ohgaki H., Wiestler O.D., et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007 Aug; Vol. 114, № 2 : Р. 97-109.
2. Ostrom Q.T., Gittleman H., Fulop J., et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015 Oct; 17 Suppl 4:iv1-iv62.
3. Herscovici Z., Rappaport Z., Sulkes J., et al. Natural history of conservatively treated meningiomas. Neurology. 2004 Sep. 28; Vol. 63, № 6. Р 1133-1134.
4. Niiro M., Yatsushiro K., Nakamura K., et al. Natural history of elderly patients with asymptomatic meningiomas. J Neurol Neurosurg Psychiatry. 2000 Jan; Vol. 68, № 1: 25-8.
5. Olivero W.C., Lister J.R., Elwood P.W. The natural history and growth rate of asymptomatic meningiomas: a review of 60 patients. J Neurosurg. 1995 Aug; Vol. 83, № 2. P. 222- 224.
6. Yano S., Kuratsu J. Indications for surgery in patients with asymptomatic meningiomas based on an extensive experience. J Neurosurg. 2006 Oct; Vol. 105, № 4. Р. 538-543.
7. Hoover J.M., Morris J.M., Meyer F.B. Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency. Surg Neurol Int. 2011; № 2. Р. 142.
8. Diluna M.L., Bulsara K.R. Surgery for petroclival meningiomas: a comprehensive review of outcomes in the skull base surgery era. Skull Base. 2010 Sep; Vol. 20, № 5. Р. 337-342.
9. Romani R., Tang W.J., Mao Y., et al. Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial meningiomas. Acta Neurochir (Wien). 2014 Oct; Vol. 156, № 10. Р. 1837-1845.
10. Little K.M., Friedman A.H., Sampson J.H., et al. Surgical management of petroclival meningiomas: defining resection goals based on risk of neurological morbidity and tumor recurrence rates in 137 patients. Neurosurgery. 2005 Mar; Vol. 56, № 3). Р. 546-559.
11. Тиглиев Г. С. Внутричерепные менингиомы / Г. С. Тиглиев, В. Е. Олюшин, А. Н. Кондратьев. — Санкт-Петербург : изд-во РНХИ им. проф. А. Л. Поленова, 2001. — 560 с. : ил. С. 187—193.
12. MR Brain volume Analysis Using BrainAssist, International Conference on Systematic, Cybernetics and Informatics / R. Jeny [et al.]. — ICSCI, Hyderabad (India), 2008. — 4 p.
13. Levene, Howard (1960). “Robust tests for equality of variances”. In Ingram Olkin; Harold Hotelling; et al. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press. Р. 278— 292.
14. Krivoshapkin A.L., Sergeev G.S., Kalneus L.E., et al. New Software for Preoperative Diagnostics of Meningeal Tumor Histologic Types. World Neurosurg. 2016 Jun; 90. Р — 123-32.
15. Kashimura H., Inoue T., Ogasawara K., et al. Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg. 2007 Oct; Vol. 107, № 4. Р. 784-787.
16. Sitthinamsuwan B., Khampalikit I., Nunta-aree S., et al. Predictors of meningioma consistency: A study in 243 consecutive cases. Acta Neurochir (Wien). 2012 Aug; Vol. 154, № 8. Р. 1383-1389.
17. Jolapara M., Kesavadas C., Radhakrishnan V.V., et al. Role of diffusion tensor imaging in differentiating subtypes of meningiomas. J Neuroradiol. 2010 Dec; Vol. 37, № 5. Р. 277-283.
18. Toh C.H., Castillo M., Wong A.M., et al. Differentiation between classic and atypical meningiomas with use of diffusion tensor imaging. AJNR Am J Neuroradiol. 2008 Oct; Vol. 29, № 9. Р. 1630-1635.
19. Filippi C.G., Edgar M.A., Uluр A.M., et al. of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol. 2001 Jan; Vol. 22, № 1. Р. 65-72.
20. Hakyemez B., Yildirim N., Gokalp G., et al. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006 Aug; Vol. 48, № 8. Р. 513-520.
21. Yamasaki F., Kurisu K., Satoh K., et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005 Jun; Vol. 235, № 3. 985-991.
22. Muthupillai R., Lomas D.J., Rossman P.J., et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995 Sep 29; Vol. 269(5232). Р. 1854-1857.
23. Hughes J.D., Fattahi N., Van Gompel J. et al. Higher-Resolution Magnetic Resonance Elastography in Meningiomas to Determine Intratumoral Consistency. Neurosurgery. 2015 Oct; Vol. 77, № 4. Р 653-658.
24. Murphy M.C., Huston J. 3rd, Glaser K.J., et al. Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg. 2013 Mar; Vol. 118, № 3. Р. 643- 648.
25. Lee J.G., Song S.W., Koh Y.C., et al. Primary intracranial fibrosarcoma presenting with hemorrhage. Brain Tumor Res Treat. 2013 Oct; Vol. 1, № 2. Р. 91-94.
26. Liu G., Chen Z.Y., Ma L. et al. Intracranial hemangiopericytoma: MR imaging findings and diagnostic usefulness of minimum ADC values. J Magn Reson Imaging. 2013 Nov; Vol. 38, № 5. Р. 1146-1151.
27. Ma C., Xu F., Xiao Y.D., et al. Magnetic resonance imaging of intracranial hemangiopericytoma and correlation with pathological findings. Oncol Lett. 2014 Nov; Vol. 8, № 5. Р. 2140-2144.
28. Smith A.B., Horkanyne-Szakaly I., Schroeder J. W. et al. From the radiologic pathology archives: mass lesions of the dura: beyond meningioma-radiologic-pathologic correlation. Radiographics. 2014. Vol. 34, № 2. P. 295—312.
Review
For citations:
Krivoshapkin A.L., Sergeev G.S., Kurbatov V.P., Gaitan A.S., Duishobaev A.R., Pyatov S.M., Mishinov S.V., Kal’neus L.E., Yanchenko A.A., Volkov A.M. Preoperative verification of histological type of meningeal tumors using magnetic resonance imaging data. Russian journal of neurosurgery. 2017;(3):11-19. (In Russ.)