Methods of neurophysiological monitoring during brainstem surgery: advantages, limitations, and future perspectives
https://doi.org/10.63769/1683-3295-2025-27-4-114-122
Abstract
Surgical treatment of tumors and micromalformations in the brainstem carries significant risks of aggravating neurological symptoms postsurgery. This is primarily due to the high concentration of critical nerve structures within the brainstem. To enhance safety during these procedures, intraoperative neurophysiological monitoring is employed. Currently, various neurophysiological modalities, including mapping techniques and continuous monitoring methods, are utilized in these neurosurgical interventions. In this review, we discuss the potential applications of intraoperative neurophysiological monitoring during brainstem surgeries, highlight the limitations of these methods, and explore the prospects for the development of intraoperative diagnostic techniques. This work may be useful for clinical neurophysiologists and neurosurgeons who perform surgical treatment of patients with tumors and micromalformations of the brainstem.
About the Authors
K. N. LaptevaРоссия
Kristina Nikolaevna Lapteva
16 4th Tverskaya-Yamskaya St., Moscow 125047
A. V. Gavrjushin
Россия
16 4th Tverskaya-Yamskaya St., Moscow 125047
References
1. Bricolo A., Turazzi S. Surgery for gliomas and other mass lesions of the brainstem. Adv Tech Stand Neurosurg 1995;22:261–341. DOI: 10.1007/978-3-7091-6898-1_5
2. Faulkner H., Arnaout O., Hoshide R. et al. The surgical resection of brainstem glioma: outcomes and prognostic factors. World Neurosurg 2021;146:e639–e50. DOI: 10.1016/j.wneu.2020.10.147
3. Morota N., Deletis V. Brainstem surgery: functional surgical anatomy with the use of an advanced modern intraoperative neurophysiological procedure. Adv Tech Stand Neurosurg 2023;48:21–55. DOI: 10.1007/978-3-031-36785-4_2
4. Bharati S.J., Pandia M.P., Rath G.P. et al. Perioperative problems in patients with brainstem tumors and their influence on patient outcome. J Anaesthesiol Clin Pharmacol 2016;32(2):172–6. DOI: 10.4103/0970-9185.182102
5. Strauss C., Romstöck J., Nimsky C. et al. Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg 1993;79(3):393–9. DOI: 10.3171/jns.1993.79.3.0393
6. Morota N., Deletis V., Epstein F. et al. Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 1995;37(5):922–9; discussion 929–30. DOI: 10.1227/00006123-199511000-00011
7. Eisner W., Schmid U.D., Reulen H.J. et al. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 1995;37(2):255–65. DOI: 10.1227/00006123-199508000-00010
8. Katsuta T., Morioka T., Fujii K., Fukui M. Physiological localization of the facial colliculus during direct surgery on an intrinsic brain stem lesion. Neurosurgery 1993;32(5):861–3. DOI: 10.1227/00006123-199305000-00025
9. Slotty P.J., Abdulazim A., Kodama K. et al. Intraoperative neurophysiological monitoring during resection of infratentorial lesions: the surgeon’s view. J Neurosurg 2017;126(1):281–8. DOI: 10.3171/2015.11.JNS15991
10. Bertalanffy H., Tissira N., Krayenbühl N. et al. Interand intrapatient variability of facial nerve response areas in the floor of the fourth ventricle. Neurosurgery 2011;68(1 Suppl Operative): 23–31; discussion 31. DOI: 10.1227/NEU.0b013e31820781fb
11. Fava E., Colistra D., Fragale M., Cenzato M. A novel method of neurophysiological brainstem mapping in neurosurgery. J Neurosci Methods 2024;405:110096. DOI: 10.1016/j.jneumeth.2024.110096
12. Karakis I. Brainstem mapping. J Clin Neurophysiol 2013; 30(6):597–603. DOI: 10.1097/01.wnp.0000436892.39727.5b
13. Catapano J.S., Rumalla K., Srinivasan V.M. et al. A taxonomy for brainstem cavernous malformations: subtypes of pontine lesions. Part 1: basilar, peritrigeminal, and middle peduncular. J Neurosurg 2022;137(5):1462–76. DOI: 10.3171/2022.1.JNS212690
14. Jenabi M., Peck K.K., Young R.J. et al. Identification of the corticobulbar tracts of the tongue and face using deterministic and probabilistic DTI fiber tracking in patients with brain tumor. AJNR Am J Neuroradiol 2015;36(11):2036–41. DOI: 10.3174/ajnr.A4430
15. Schlake H.P., Goldbrunner R.H., Milewski C. et al. Intra-operative electromyographic monitoring of the lower cranial motor nerves (LCN IX–XII) in skull base surgery. Clin Neurol Neurosurg 2001;103(2):72–82. DOI: 10.1016/s0303-8467(01)00115-9
16. Grabb P.A., Albright A.L., Sclabassi R.J., Pollack I.F. Continuous intraoperative electromyographic monitoring of cranial nerves during resection of fourth ventricular tumors in children. J Neurosurg 1997;86(1):1–4. DOI: 10.3171/jns.1997.86.1.0001
17. Sala F., D’Amico A. Intraoperative neurophysiological monitoring during brainstem surgery. In: Brainstem tumors. Ed. by G. Jallo, M. Noureldine, N. Shimony. Switzerland: Springer, 2020. Pp. 109–130. DOI: 10.1007/978-3-030-38774-7_5
18. Dong C.C., Macdonald D.B., Akagami R. et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 2005;116(3):588–96. DOI: 10.1016/j.clinph.2004.09.013
19. Matthies C., Raslan F., Schweitzer T. et al. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Clin Neurol Neurosurg 2011;113(10):872–9. DOI: 10.1016/j.clineuro.2011.06.011
20. Kullmann M., Tatagiba M., Liebsch M., Feigl G.C. Evaluation of the predictive value of intraoperative changes in motor-evoked potentials of caudal cranial nerves for the postoperative functional outcome. World Neurosurg 2016;95:329–34. DOI: 10.1016/j.wneu.2016.07.078
21. Fukuda M., Takao T., Hiraishi T. et al. Pharyngeal motor evoked potential monitoring during skull base surgery predicts postoperative recovery from swallowing dysfunction. World Neurosurg 2015;84(2):555–60. DOI: 10.1016/j.wneu.2015.04.023
22. Goto T., Muraoka H., Kodama K. et al. Intraoperative monitoring of motor evoked potential for the facial nerve using a cranial pegscrew electrode and a “threshold-level” stimulation method. Skull Base 2010;20(6):429–34. DOI: 10.1055/s-0030-1261270
23. Ito E., Ichikawa M., Itakura T. et al. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries. J Neurosurg 2013;118(1):195–201. DOI: 10.3171/2012.10.JNS12383
24. Fernández-Conejero I., Ulkatan S., Sen C. et al. Intraoperative monitoring of facial corticobulbar motor evoked potentials: methodological improvement and analysis of 100 patients. Clin Neurophysiol 2022;142:228–35. DOI: 10.1016/j.clinph.2022.08.006
25. Choi J., Díaz-Baamonde A., Sánchez Roldán M.L.Á. et al. Advancing intraoperative neurophysiological monitoring with human reflexes. J Clin Neurol 2024;20(2):119–30. DOI: 10.3988/jcn.2023.0416
26. Fernández-Conejero I., Ulkatan S., Sen C., Deletis V. Intraoperative neurophysiology during microvascular decompression for hemifacial spasm. Clin Neurophysiol 2012;123(1):78–83. DOI: 10.1016/j.clinph.2011.10.007
27. Liu J., Fan X., Yang L. et al. Predictive value of Blink reflex and facial corticobulbar motor evoked potential in cerebellopontine angle tumor surgery. Clin Neurophysiol 2024;162:165–73. DOI: 10.1016/j.clinph.2024.03.033
28. Téllez M.J., Mirallave-Pescador A., Seidel K. et al. Neurophysiological monitoring of the laryngeal adductor reflex during cerebellar-pontine angle and brainstem surgery. Clin Neurophysiol 2021;132(2):622–31. DOI: 10.1016/j.clinph.2020.10.021
29. Sinclair C.F., Téllez M.J., Ulkatan S. Noninvasive, tube-based, continuous vagal nerve monitoring using the laryngeal adductor reflex: feasibility study of 134 nerves at risk. Head Neck 2018;40(11):2498–506. DOI: 10.1002/hed.25377
30. Choi J., Yang S., Kim J.S. et al. Predictive value of intraoperative blink reflex monitoring for surgical outcome during microvascular decompression for hemifacial spasm. Clin Neurophysiol 2020;131(9):2268–75. DOI: 10.1016/j.clinph.2020.06.025
31. Szelényi A., Fava E. Long latency responses in tongue muscle elicited by various stimulation sites in anesthetized humans – new insights into tongue-related brainstem reflexes. Brain Stimul 2022;15(3):566–75. DOI: 10.1016/j.brs.2022.03.003
32. Mirallave Pescador A., Téllez M.J., Sánchez Roldán M.L.Á. et al. Methodology for eliciting the brainstem trigeminal-hypoglossal reflex in humans under general anesthesia. Clin Neurophysiol 2022;137:1–10. DOI: 10.1016/j.clinph.2022.02.004
33. Aydinlar E.I., Kocak M., Soykam H.O. et al. Intraoperative neuromonitoring of blink reflex during posterior fossa surgeries and its correlation with clinical outcome. J Clin Neurophysiol 2022;39(4):299–306. DOI: 10.1097/WNP.0000000000000777
34. Deletis V., Urriza J., Ulkatan S. et al. The feasibility of recording blink reflexes under general anesthesia. Muscle Nerve 2009;39(5):642–6. DOI: 10.1002/mus.21257
35. Ulkatan S., Jaramillo A.M., Téllez M.J. et al. Feasibility of eliciting the H reflex in the masseter muscle in patients under general anesthesia. Clin Neurophysiol 2017;128(1):123–7. DOI: 10.1016/j.clinph.2016.10.092
36. Rogalska M., Antkowiak L., Mandera M. Clinical application of diffusion tensor imaging and fiber tractography in the management of brainstem cavernous malformations: a systematic review. Neurosurg Rev 2022;45(3):2027–40. DOI: 10.1007/s10143-022-01759-7
37. Yang Y., Neidert M.C., Velz J. et al. Mapping and monitoring of the corticospinal tract by direct brainstem stimulation. Neurosurgery 2022;91(3):496–504. DOI: 10.1227/neu.0000000000002065
38. Dmitriev A.Yu., Sinkin M.V., Dashyan V.G. Intraoperative neuromonitoring in surgery of supratentorial brain tumors. Part 1. Assessment of motor conductivity. Neyrokhirurgiya = Russian Journal of Neurosurgery 2022;24(2):105–12. (In Russ.). DOI: 10.17650/1683-3295-2022-24-2-105-112
39. Shiban E., Zerr M., Huber T. et al. Poor diagnostic accuracy of transcranial motor and somatosensory evoked potential monitoring during brainstem cavernoma resection. Acta Neurochir (Wien) 2015; 157(11):1963–9; discussion 1969. DOI: 10.1007/s00701-015-2573-7
40. Neuloh G., Bogucki J., Schramm J. Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry 2009;80(4):417–22. DOI: 10.1136/jnnp.2008.157792
41. Sarnthein J., Bozinov O., Melone A.G. et al. Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function. Acta Neurochir (Wien) 2011;153(9):1753–9. DOI: 10.1007/s00701-011-1065-7
42. Rauschenbach L., Santos A.N., Dinger T.F. et al. Predictive value of intraoperative neuromonitoring in brainstem cavernous malformation surgery. World Neurosurg 2021;156:e359–e73. DOI: 10.1016/j.wneu.2021.09.064
43. Kodama K., Javadi M., Seifert V., Szelényi A. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients. J Neurosurg 2014;121(6): 1453–61. DOI: 10.3171/2014.7.JNS131821
44. Gläsker S., Pechstein U., Vougioukas V.I., Van Velthoven V. Monitoring motor function during resection of tumours in the lower brain stem and fourth ventricle. Childs Nerv Syst 2006;22(10):1288–95. DOI: 10.1007/s00381-006-0101-z
45. Toleikis J.R., Pace C., Jahangiri F.R. et al. Intraoperative somatosensory evoked potential (SEP) monitoring: an updated position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 2024;38(5):1003–42. DOI: 10.1007/s10877-024-01201-x
46. Kombos T., Suess O., Da Silva C. et al. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol 2003;20(2):122–8. DOI: 10.1097/00004691-200304000-00006
47. Shchekutʼev G.A., Lubnin A.Yu., Barkalaya D.E. et al. Monitoring of short latent evoked potentials during brain stem surgery. Anesteziologiya i reanimatologiya = Russian Journal of Anesthesiology and Reanimatology 1994;5:48–52. (In Russ.).
48. Thirumala P.D., Kassasm A.B., Habeych M. et al. Somatosensory evoked potential monitoring during endoscopic endonasal approach to skull base surgery: analysis of observed changes. Neurosurgery 2011;69(1 Suppl Operative):ons64–76; discussion ons76. DOI: 10.1227/NEU.0b013e31821606e4
49. Le S., Nguyen V., Lee L. et al. Direct brainstem somatosensory evoked potentials for cavernous malformations. J Neurosurg 2021;137(1):156–62. DOI: 10.3171/2021.7.JNS21317
50. Lopez J.R. Intraoperative neurophysiological monitoring. Int Anesthesiol Clin 1996;34(4):33–54. DOI: 10.1097/00004311-199603440-00005
51. Takasato Y., Arai T., Ohta Y., Yamada K. Gross total removal of adult brainstem glioma – two case reports. Neurol Med Chir (Tokyo) 1993;33(9):625–9. DOI: 10.2176/nmc.33.625
52. Raudzens P.A., Shetter A.G. Intraoperative monitoring of brainstem auditory evoked potentials. J Neurosurg 1982;57(3):341–8. DOI: 10.3171/jns.1982.57.3.0341
53. Welch C.M., Mannarelli G., Koehler L., Telian S.A. Intraoperative auditory brainstem response results predict delayed sensorineural hearing loss after middle cranial fossa resection of vestibular schwannoma. Otol Neurotol 2021;42(6):e771–e8. DOI: 10.1097/MAO.0000000000003085
54. Thirumala P.D., Carnovale G., Habeych M.E. et al. Diagnostic accuracy of brainstem auditory evoked potentials during microvascular decompression. Neurology 2014;83(19):1747–52. DOI: 10.1212/WNL.0000000000000961
55. Catapano J.S., Benner D., Rhodenhiser E.G. et al. Safety of brainstem safe entry zones: comparison of microsurgical outcomes associated with superficial, exophytic, and deep brainstem cavernous malformations. J Neurosurg 2022;139(1): 113–23. DOI: 10.3171/2022.9.JNS222012
56. Kálmánchey R., Avila A., Symon L. The use of brainstem auditory evoked potentials during posterior fossa surgery as a monitor of brainstem function. Acta Neurochir (Wien) 1986;82(3–4):128–36. DOI: 10.1007/BF01456373
57. Chen L., Zhao Y., Zhou L. et al. Surgical strategies in treating brainstem cavernous malformations. Neurosurgery 2011;68(3): 609–20; discussion 620–1. DOI: 10.1227/NEU.0b013e3182077531
Review
For citations:
Lapteva K.N., Gavrjushin A.V. Methods of neurophysiological monitoring during brainstem surgery: advantages, limitations, and future perspectives. Russian journal of neurosurgery. 2025;27(4):114-122. (In Russ.) https://doi.org/10.63769/1683-3295-2025-27-4-114-122
JATS XML

























