Методы нейрофизиологического мониторинга при операциях на стволе головного мозга: преимущества, ограничения и перспективы развития
https://doi.org/10.63769/1683-3295-2025-27-4-114-122
Аннотация
Хирургическое лечение опухолей и микромальформаций ствола головного мозга сопряжено с рисками нарастания неврологической симптоматики после операции, что обусловлено высокой концентрацией жизнеобеспечивающих нервных структур в стволе мозга. Для проведения максимально безопасных хирургических вмешательств используют интраоперационный нейрофизиологический мониторинг. На данный момент имеются различные нейрофизиологические модальности – как методики картирования, так и непрерывного мониторинга, которые применяют при нейрохирургических вмешательствах. В статье освещаются возможности применения интраоперационного нейрофизиологического мониторинга во время таких операций на основании данных, представленных в литературе. Работа может быть полезна клиническим нейрофизиологам и нейрохирургам, занимающимся хирургическим лечением пациентов с опухолями и микромальформациями ствола головного мозга.
Об авторах
К. Н. ЛаптеваРоссия
Кристина Николаевна Лаптева
125047 Москва, ул. 4‑я Тверская-Ямская, 16
А. В. Гаврюшин
Россия
125047 Москва, ул. 4‑я Тверская-Ямская, 16
Список литературы
1. Bricolo A., Turazzi S. Surgery for gliomas and other mass lesions of the brainstem. Adv Tech Stand Neurosurg 1995;22:261–341. DOI: 10.1007/978-3-7091-6898-1_5
2. Faulkner H., Arnaout O., Hoshide R. et al. The surgical resection of brainstem glioma: outcomes and prognostic factors. World Neurosurg 2021;146:e639–e50. DOI: 10.1016/j.wneu.2020.10.147
3. Morota N., Deletis V. Brainstem surgery: functional surgical anatomy with the use of an advanced modern intraoperative neurophysiological procedure. Adv Tech Stand Neurosurg 2023;48:21–55. DOI: 10.1007/978-3-031-36785-4_2
4. Bharati S.J., Pandia M.P., Rath G.P. et al. Perioperative problems in patients with brainstem tumors and their influence on patient outcome. J Anaesthesiol Clin Pharmacol 2016;32(2):172–6. DOI: 10.4103/0970-9185.182102
5. Strauss C., Romstöck J., Nimsky C. et al. Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg 1993;79(3):393–9. DOI: 10.3171/jns.1993.79.3.0393
6. Morota N., Deletis V., Epstein F. et al. Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 1995;37(5):922–9; discussion 929–30. DOI: 10.1227/00006123-199511000-00011
7. Eisner W., Schmid U.D., Reulen H.J. et al. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 1995;37(2):255–65. DOI: 10.1227/00006123-199508000-00010
8. Katsuta T., Morioka T., Fujii K., Fukui M. Physiological localization of the facial colliculus during direct surgery on an intrinsic brain stem lesion. Neurosurgery 1993;32(5):861–3. DOI: 10.1227/00006123-199305000-00025
9. Slotty P.J., Abdulazim A., Kodama K. et al. Intraoperative neurophysiological monitoring during resection of infratentorial lesions: the surgeon’s view. J Neurosurg 2017;126(1):281–8. DOI: 10.3171/2015.11.JNS15991
10. Bertalanffy H., Tissira N., Krayenbühl N. et al. Interand intrapatient variability of facial nerve response areas in the floor of the fourth ventricle. Neurosurgery 2011;68(1 Suppl Operative): 23–31; discussion 31. DOI: 10.1227/NEU.0b013e31820781fb
11. Fava E., Colistra D., Fragale M., Cenzato M. A novel method of neurophysiological brainstem mapping in neurosurgery. J Neurosci Methods 2024;405:110096. DOI: 10.1016/j.jneumeth.2024.110096
12. Karakis I. Brainstem mapping. J Clin Neurophysiol 2013; 30(6):597–603. DOI: 10.1097/01.wnp.0000436892.39727.5b
13. Catapano J.S., Rumalla K., Srinivasan V.M. et al. A taxonomy for brainstem cavernous malformations: subtypes of pontine lesions. Part 1: basilar, peritrigeminal, and middle peduncular. J Neurosurg 2022;137(5):1462–76. DOI: 10.3171/2022.1.JNS212690
14. Jenabi M., Peck K.K., Young R.J. et al. Identification of the corticobulbar tracts of the tongue and face using deterministic and probabilistic DTI fiber tracking in patients with brain tumor. AJNR Am J Neuroradiol 2015;36(11):2036–41. DOI: 10.3174/ajnr.A4430
15. Schlake H.P., Goldbrunner R.H., Milewski C. et al. Intra-operative electromyographic monitoring of the lower cranial motor nerves (LCN IX–XII) in skull base surgery. Clin Neurol Neurosurg 2001;103(2):72–82. DOI: 10.1016/s0303-8467(01)00115-9
16. Grabb P.A., Albright A.L., Sclabassi R.J., Pollack I.F. Continuous intraoperative electromyographic monitoring of cranial nerves during resection of fourth ventricular tumors in children. J Neurosurg 1997;86(1):1–4. DOI: 10.3171/jns.1997.86.1.0001
17. Sala F., D’Amico A. Intraoperative neurophysiological monitoring during brainstem surgery. In: Brainstem tumors. Ed. by G. Jallo, M. Noureldine, N. Shimony. Switzerland: Springer, 2020. Pp. 109–130. DOI: 10.1007/978-3-030-38774-7_5
18. Dong C.C., Macdonald D.B., Akagami R. et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 2005;116(3):588–96. DOI: 10.1016/j.clinph.2004.09.013
19. Matthies C., Raslan F., Schweitzer T. et al. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Clin Neurol Neurosurg 2011;113(10):872–9. DOI: 10.1016/j.clineuro.2011.06.011
20. Kullmann M., Tatagiba M., Liebsch M., Feigl G.C. Evaluation of the predictive value of intraoperative changes in motor-evoked potentials of caudal cranial nerves for the postoperative functional outcome. World Neurosurg 2016;95:329–34. DOI: 10.1016/j.wneu.2016.07.078
21. Fukuda M., Takao T., Hiraishi T. et al. Pharyngeal motor evoked potential monitoring during skull base surgery predicts postoperative recovery from swallowing dysfunction. World Neurosurg 2015;84(2):555–60. DOI: 10.1016/j.wneu.2015.04.023
22. Goto T., Muraoka H., Kodama K. et al. Intraoperative monitoring of motor evoked potential for the facial nerve using a cranial pegscrew electrode and a “threshold-level” stimulation method. Skull Base 2010;20(6):429–34. DOI: 10.1055/s-0030-1261270
23. Ito E., Ichikawa M., Itakura T. et al. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries. J Neurosurg 2013;118(1):195–201. DOI: 10.3171/2012.10.JNS12383
24. Fernández-Conejero I., Ulkatan S., Sen C. et al. Intraoperative monitoring of facial corticobulbar motor evoked potentials: methodological improvement and analysis of 100 patients. Clin Neurophysiol 2022;142:228–35. DOI: 10.1016/j.clinph.2022.08.006
25. Choi J., Díaz-Baamonde A., Sánchez Roldán M.L.Á. et al. Advancing intraoperative neurophysiological monitoring with human reflexes. J Clin Neurol 2024;20(2):119–30. DOI: 10.3988/jcn.2023.0416
26. Fernández-Conejero I., Ulkatan S., Sen C., Deletis V. Intraoperative neurophysiology during microvascular decompression for hemifacial spasm. Clin Neurophysiol 2012;123(1):78–83. DOI: 10.1016/j.clinph.2011.10.007
27. Liu J., Fan X., Yang L. et al. Predictive value of Blink reflex and facial corticobulbar motor evoked potential in cerebellopontine angle tumor surgery. Clin Neurophysiol 2024;162:165–73. DOI: 10.1016/j.clinph.2024.03.033
28. Téllez M.J., Mirallave-Pescador A., Seidel K. et al. Neurophysiological monitoring of the laryngeal adductor reflex during cerebellar-pontine angle and brainstem surgery. Clin Neurophysiol 2021;132(2):622–31. DOI: 10.1016/j.clinph.2020.10.021
29. Sinclair C.F., Téllez M.J., Ulkatan S. Noninvasive, tube-based, continuous vagal nerve monitoring using the laryngeal adductor reflex: feasibility study of 134 nerves at risk. Head Neck 2018;40(11):2498–506. DOI: 10.1002/hed.25377
30. Choi J., Yang S., Kim J.S. et al. Predictive value of intraoperative blink reflex monitoring for surgical outcome during microvascular decompression for hemifacial spasm. Clin Neurophysiol 2020;131(9):2268–75. DOI: 10.1016/j.clinph.2020.06.025
31. Szelényi A., Fava E. Long latency responses in tongue muscle elicited by various stimulation sites in anesthetized humans – new insights into tongue-related brainstem reflexes. Brain Stimul 2022;15(3):566–75. DOI: 10.1016/j.brs.2022.03.003
32. Mirallave Pescador A., Téllez M.J., Sánchez Roldán M.L.Á. et al. Methodology for eliciting the brainstem trigeminal-hypoglossal reflex in humans under general anesthesia. Clin Neurophysiol 2022;137:1–10. DOI: 10.1016/j.clinph.2022.02.004
33. Aydinlar E.I., Kocak M., Soykam H.O. et al. Intraoperative neuromonitoring of blink reflex during posterior fossa surgeries and its correlation with clinical outcome. J Clin Neurophysiol 2022;39(4):299–306. DOI: 10.1097/WNP.0000000000000777
34. Deletis V., Urriza J., Ulkatan S. et al. The feasibility of recording blink reflexes under general anesthesia. Muscle Nerve 2009;39(5):642–6. DOI: 10.1002/mus.21257
35. Ulkatan S., Jaramillo A.M., Téllez M.J. et al. Feasibility of eliciting the H reflex in the masseter muscle in patients under general anesthesia. Clin Neurophysiol 2017;128(1):123–7. DOI: 10.1016/j.clinph.2016.10.092
36. Rogalska M., Antkowiak L., Mandera M. Clinical application of diffusion tensor imaging and fiber tractography in the management of brainstem cavernous malformations: a systematic review. Neurosurg Rev 2022;45(3):2027–40. DOI: 10.1007/s10143-022-01759-7
37. Yang Y., Neidert M.C., Velz J. et al. Mapping and monitoring of the corticospinal tract by direct brainstem stimulation. Neurosurgery 2022;91(3):496–504. DOI: 10.1227/neu.0000000000002065
38. Дмитриев А.Ю., Синкин М.В., Дашьян В.Г. Интраоперационный нейрофизиологический мониторинг в хирургии опухолей головного мозга супратенториальной локализации. Часть 1. Исследование двигательной проводимости. Нейрохирургия 2022;24(2):105–12. DOI: 10.17650/1683-3295-2022-24-2-105-112
39. Shiban E., Zerr M., Huber T. et al. Poor diagnostic accuracy of transcranial motor and somatosensory evoked potential monitoring during brainstem cavernoma resection. Acta Neurochir (Wien) 2015; 157(11):1963–9; discussion 1969. DOI: 10.1007/s00701-015-2573-7
40. Neuloh G., Bogucki J., Schramm J. Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry 2009;80(4):417–22. DOI: 10.1136/jnnp.2008.157792
41. Sarnthein J., Bozinov O., Melone A.G. et al. Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function. Acta Neurochir (Wien) 2011;153(9):1753–9. DOI: 10.1007/s00701-011-1065-7
42. Rauschenbach L., Santos A.N., Dinger T.F. et al. Predictive value of intraoperative neuromonitoring in brainstem cavernous malformation surgery. World Neurosurg 2021;156:e359–e73. DOI: 10.1016/j.wneu.2021.09.064
43. Kodama K., Javadi M., Seifert V., Szelényi A. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients. J Neurosurg 2014;121(6): 1453–61. DOI: 10.3171/2014.7.JNS131821
44. Gläsker S., Pechstein U., Vougioukas V.I., Van Velthoven V. Monitoring motor function during resection of tumours in the lower brain stem and fourth ventricle. Childs Nerv Syst 2006;22(10):1288–95. DOI: 10.1007/s00381-006-0101-z
45. Toleikis J.R., Pace C., Jahangiri F.R. et al. Intraoperative somatosensory evoked potential (SEP) monitoring: an updated position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 2024;38(5):1003–42. DOI: 10.1007/s10877-024-01201-x
46. Kombos T., Suess O., Da Silva C. et al. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol 2003;20(2):122–8. DOI: 10.1097/00004691-200304000-00006
47. Щекутьев Г.А., Лубнин А.Ю., Баркалая Д.Е. и др. Мониторинг коротколатентных вызванных потенциалов во время операций на стволе головного мозга. Анестезиология и реаниматология 1994;5:48–52.
48. Thirumala P.D., Kassasm A.B., Habeych M. et al. Somatosensory evoked potential monitoring during endoscopic endonasal approach to skull base surgery: analysis of observed changes. Neurosurgery 2011;69(1 Suppl Operative):ons64–76; discussion ons76. DOI: 10.1227/NEU.0b013e31821606e4
49. Le S., Nguyen V., Lee L. et al. Direct brainstem somatosensory evoked potentials for cavernous malformations. J Neurosurg 2021;137(1):156–62. DOI: 10.3171/2021.7.JNS21317
50. Lopez J.R. Intraoperative neurophysiological monitoring. Int Anesthesiol Clin 1996;34(4):33–54. DOI: 10.1097/00004311-199603440-00005
51. Takasato Y., Arai T., Ohta Y., Yamada K. Gross total removal of adult brainstem glioma – two case reports. Neurol Med Chir (Tokyo) 1993;33(9):625–9. DOI: 10.2176/nmc.33.625
52. Raudzens P.A., Shetter A.G. Intraoperative monitoring of brainstem auditory evoked potentials. J Neurosurg 1982;57(3):341–8. DOI: 10.3171/jns.1982.57.3.0341
53. Welch C.M., Mannarelli G., Koehler L., Telian S.A. Intraoperative auditory brainstem response results predict delayed sensorineural hearing loss after middle cranial fossa resection of vestibular schwannoma. Otol Neurotol 2021;42(6):e771–e8. DOI: 10.1097/MAO.0000000000003085
54. Thirumala P.D., Carnovale G., Habeych M.E. et al. Diagnostic accuracy of brainstem auditory evoked potentials during microvascular decompression. Neurology 2014;83(19):1747–52. DOI: 10.1212/WNL.0000000000000961
55. Catapano J.S., Benner D., Rhodenhiser E.G. et al. Safety of brainstem safe entry zones: comparison of microsurgical outcomes associated with superficial, exophytic, and deep brainstem cavernous malformations. J Neurosurg 2022;139(1): 113–23. DOI: 10.3171/2022.9.JNS222012
56. Kálmánchey R., Avila A., Symon L. The use of brainstem auditory evoked potentials during posterior fossa surgery as a monitor of brainstem function. Acta Neurochir (Wien) 1986;82(3–4):128–36. DOI: 10.1007/BF01456373
57. Chen L., Zhao Y., Zhou L. et al. Surgical strategies in treating brainstem cavernous malformations. Neurosurgery 2011;68(3): 609–20; discussion 620–1. DOI: 10.1227/NEU.0b013e3182077531
Рецензия
Для цитирования:
Лаптева К.Н., Гаврюшин А.В. Методы нейрофизиологического мониторинга при операциях на стволе головного мозга: преимущества, ограничения и перспективы развития. Нейрохирургия. 2025;27(4):114-122. https://doi.org/10.63769/1683-3295-2025-27-4-114-122
For citation:
Lapteva K.N., Gavrjushin A.V. Methods of neurophysiological monitoring during brainstem surgery: advantages, limitations, and future perspectives. Russian journal of neurosurgery. 2025;27(4):114-122. (In Russ.) https://doi.org/10.63769/1683-3295-2025-27-4-114-122
JATS XML


























