Preview

Russian journal of neurosurgery

Advanced search

Overcoming the restrictive function of the blood-brain barrier in the perifocal zone of coagulation necrosis initiated by interstitial laser hyperthermia (experimental study)

https://doi.org/10.24412/2587-7569-2025-1-51-59

Abstract

Background. The infiltrative nature of glioblastoma growth, resistance to treatment lead to its recurrent growth after standard treatment. The first-line chemotherapy has a limited effect, and after 4–8 months, most patients experience recurrent glioblastoma growth in the perifocal zone. Optimization of the penetration of existing drugs and the use of new effective drugs that do not penetrate the blood-brain barrier (BBB) is a relevant issue.

Aim. To determine the possibility of overcoming the restrictive function of the BBB when using laser hyperthermia in order to predict the possibility of glioblastoma treatment with drugs that do not penetrate the BBB.

Materials and methods. The strategy and evidence of opening the BBB in the perifocal zone of coagulation necrosis resulting from laser hyperthermia are presented. After trepanation of the skull, the dye indocyanine green (ICG) was intravenously injected into the rat’s tail vein. An optical fiber of 400 μm was inserted into the avascular area of the cortex to a depth of 2 mm, and interstitial irradiation with a wavelength of 1560 nm was performed for 50 seconds. After laser coagulation of the cortex area, the exit of ICG into the perivascular space of the perifocal zone was observed.

Results. The experiment visually demonstrated an example of extravasation of a large dye molecule, which under normal conditions does not leave the vascular bed. The observed exit of ICG into the perivascular space at the periphery of the coagulation necrosis using a fluorescent camera demonstrates the opening of the BBB.

Conclusion. The combination of cytoreductive surgery and opening of the BBB show synergistic possibilities of laser hyperthermia for chemotherapy. The emerging opportunities for using new drugs in the treatment of glioblastoma in the perifocal zone of the operated tumor are potentially able to increase the therapeutic effect and prolong the lives of patients.

About the Authors

O. V. Ostreiko
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

Oleg V. Ostreyko.

6–8 L’va Tolstogo St., Saint Petersburg 197022



G. V. Papayan
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



T. G. Grishacheva
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



S. G. Chefu
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



N. N. Petrishchev
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



References

1. Scherer H.J. The forms of growth in gliomas and their practical significance. Brain 1940;63(1):1–35. DOI: 10.1093/brain/63.1.1

2. Blasel S., Franz K., Mittelbronn M. et al. The striate sign: peritumoural perfusion pattern of infiltrative primary and recurrent gliomas. Neurosurg Rev 2010;33(2):193–204. DOI: 10.1007/s10143-010-0248-7

3. Wick W., Stupp R., Beule A.-C. et al. A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol 2008;10(6):1019–24. DOI: 10.1215/15228517-2008-058

4. De Bonis P., Anile C., Pompucci A. et al. The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg 2013;115(1):37–43. DOI: 10.1016/j.clineuro.2012.04.005

5. Gretskikh K.V., Tokarev A.S. High-grade gliomas: a literature review. Part 1. Epidemiology, classification and approaches to combination treatment. Neyrokhirurgiya = Russian Journal of Neurosurgery 2021;23(1):124–34. (In Russ.). DOI: 10.17650/1683-3295-2021-23-1-124-134

6. Arvanitis C.D., Ferraro G.B., Jain R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020;20(1):26–41. DOI: 10.1038/s41568-019-0205-x

7. Upton D.H., Ung C., George S.M. et al. Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy. Theranostics 2022;12(10):4734–52. DOI: 10.7150/thno.69682

8. De Vries N.A., Beijnen J.H., Boogerd W., van Tellingen O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurotherapeutics 2006;6(8):1199–209. DOI: 10.1586/14737175.6.8.1199

9. Zhang W., Mehta A., Tong Z. et al. Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv Sci (Weinh) 2021;8(10):2003937. DOI: 10.1002/advs.202003937

10. Lockman P.R., Mittapalli R.K., Taskar K.S. et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 2010;16(23):5664–78. DOI: 10.1158/1078-0432.CCR-10-1564

11. Zhang F., Xu C., Liu C. Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma. Drug Des Devel Ther 2015;9:2089–100. DOI: 10.2147/DDDT.S79592

12. Vazana U., Schori L., Monsonego U. et al. TMS-induced controlled BBB opening: preclinical characterization and implications for treatment of brain cancer. Pharmaceutics 2020;12(10):946. DOI: 10.3390/pharmaceutics12100946

13. Yuan H., Gaber M.W., Boyd K. et al. Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 2006;66(3):860–6. DOI: 10.1016/j.ijrobp.2006.06.043

14. Arsiwala T.A., Sprowls S.A., Blethen K.E. et al. Ultrasound-mediated disruption of the blood tumor barrier for improved therapeutic delivery. Neoplasia 2021;23(7):676–91. DOI: 10.1016/j.neo.2021.04.005

15. Silva D., Sharma M., Juthani R. et al. Magnetic resonance thermometry and laser interstitial thermal therapy for brain tumors. Neurosurg Clin N Am 2017;28(4):525–33. DOI: 10.1016/j.nec.2017.05.015

16. Ostreyko O.V., Mozshaev S.V. Method for the treatment of glial brain tumors of supratentorial localization. Available at: https://new.fips.ru/Archive/PAT/2014FULL/2014.11.20/DOC/RUNWC1/000/000/002/533/032/DOCUMENT.PDF (date of access 03.08.2023). (In Russ.).

17. Mirza F.A., Mitha R., Shamim M.S. Current role of laser interstitial thermal therapy in the treatment of intracranial tumors. Asian J Neurosurg 2020;15(4):800–8. DOI: 10.4103/ajns.AJNS_185_20

18. Fadel H.A., Haider S., Pawloski J.A. et al. Laser interstitial thermal therapy for first-line treatment of surgically accessible recurrent glioblastoma: outcomes compared with a surgical cohort. Neurosurgery 2022;91(5):701–9. DOI: 10.1227/neu.0000000000002093

19. Leuthardt E.C., Duan C., Kim M.J. et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One 2016;11(2):e0148613. DOI: 10.1371/journal.pone.0148613

20. Salehi A., Paturu M.R., Patel B. et al. Therapeutic enhancement of blood-brain and blood-tumor barriers permeability by laser interstitial thermal therapy. Neurooncol Adv 2020;2(1):vdaa071. DOI: 10.1093/noajnl/vdaa071

21. Sabel M., Rommel F., Kondakci M. et al. Locoregional opening of the rodent blood-brain barrier for paclitaxel using Nd:YAG laser-induced thermo therapy: a new concept of adjuvant glioma therapy? Laser Surg Med 2003;33(2):75–80. DOI: 10.1002/lsm.10181

22. Ostreiko O.V., Galkin M.A., Papayan G.V. et al. Application of biophantomes to evaluate the thermal effects of laser radiation with wavelengths of 970 nm and 1560 nm under different exposure modes. Biomed Photon 2022;11(2):12–22. DOI: 10.24931/2413-9432-2022-11-2-12-22

23. Kang Uk, Papayan G.V., Berezin V.B. et al. Multispectral fluorescence organoscopes for in vivo studies of laboratory animals and their organs. Opticheskii Zhurnal = Journal of Optical Technology 2011;78(9):82–90. (In Russ.).

24. Zhao X., Chen R., Liu M. et al. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017;7(5):541–53. DOI: 10.1016/j.apsb.2017.07.002

25. Sanai N., Polley M.-Y., McDermott M.W. et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 2011;115(1):3–8. DOI: 10.3171/2011.2.jns10998

26. D’Amico R.S., Englander Z.K., Canoll P., Bruce J.N. Extent of resection in glioma – a review of the cutting edge. World Neurosurg 2017;103:538–549. DOI: 10.1016/j.wneu.2017.04.041

27. Man J., Shoemake J.D., Ma T. et al. Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res 2015;75(8):1760–9. DOI: 10.1158/0008-5472.can-14-3621

28. Rahmathulla G., Recinos P.F., Kamian K. et al. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology 2014;87(2):67–82. DOI: 10.1159/000362817


Review

For citations:


Ostreiko O.V., Papayan G.V., Grishacheva T.G., Chefu S.G., Petrishchev N.N. Overcoming the restrictive function of the blood-brain barrier in the perifocal zone of coagulation necrosis initiated by interstitial laser hyperthermia (experimental study). Russian journal of neurosurgery. 2025;27(1):51-59. (In Russ.) https://doi.org/10.24412/2587-7569-2025-1-51-59

Views: 180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X