Preview

Russian journal of neurosurgery

Advanced search

Radiofrequency thermocoagulation parameters impact on lesion size during stereo-EEG

https://doi.org/10.24412/1683-3295-2025-27-1-22-32

Abstract

Background. Radiofrequency thermocoagulation of the epileptogenic zone via depth stereo electrodes may be an alternative to resective surgery in patients with drug-resistant epilepsy.

Aim. To determine the parameters of radiofrequency thermocoagulation that affect the lesion volume.

Materials and methods. A study was conducted using chicken egg whites. With the help of depth electrodes, lesions of different volumes were produced at different parameters. Data of two patients who underwent stereoelectroencephalography at the N.I. Pirogov National Medical Clinical Center (the size of the focus of destruction and its effect on the course of the disease) are presented as examples of the use of the method in clinical practice.

Results. The largest lesion was created at a power of 3 W for 180 seconds between adjacent contacts of one electrode. Using this technology in clinical practice allowed partial destruction of the epileptogenic zone in one case and complete destruction in the second.

Radiofrequency thermocoagulation allows to achieve seizure freedom or a reduction in their frequency and intensity in patients with drug-resistant epilepsy. The relationships we discovered between the parameters of radiofrequency thermocoagulation and the parameters of the formed lesions are similar to those presented in other works.

Conclusion. The largest lesions are formed as a result of radiofrequency thermocoagulation with lower power and longer exposure. The effectiveness of radiofrequency thermocoagulation as a treatment for epilepsy is influenced by the ratio of the lesion size and the size of the epileptogenic zone.

About the Authors

E. A. Gordeyeva
N.I. Pirogov National Medical and Surgical Center, Ministry of Health of Russia
Russian Federation

Elizaveta A. Gordeyeva.

70 Nizhnyaya Pervomayskaya St., Moscow 105203



A. V. Dimertsev
N.I. Pirogov National Medical and Surgical Center, Ministry of Health of Russia
Russian Federation

70 Nizhnyaya Pervomayskaya St., Moscow 105203



I. P. Salamov
A.V. Vishnevsky Republican State Hospital
Russian Federation

47 Lyakhova St., Republic of Dagestan, Mahachkala, 367026



N. O. Ivin
N.I. Pirogov National Medical and Surgical Center, Ministry of Health of Russia
Russian Federation

70 Nizhnyaya Pervomayskaya St., Moscow 105203



A. A. Zuev
N.I. Pirogov National Medical and Surgical Center, Ministry of Health of Russia
Russian Federation

70 Nizhnyaya Pervomayskaya St., Moscow 105203



References

1. Kwan P., Brodie M.J. Early identification of refractory epilepsy. N Engl J Med 2000;342(5):314–9. DOI: 10.1056/NEJM200002033420503

2. Jobst B.C., Cascino G.D. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 2015;313(3):285–93. DOI: 10.1001/jama.2014.17426

3. Baumgartner C., Koren J.P., Britto-Arias M. et al. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res 2019;8:F1000 Faculty Rev-1818. DOI: 10.12688/f1000research.17714.1

4. Anyanwu C., Motamedi G.K. Diagnosis and surgical treatment of drug-resistant epilepsy. Brain Sci 2018;8(4):49. DOI: 10.3390/brainsci8040049

5. Zuev A.A., Golovteev A.L., Pedyash N.V. et al. Pre-surgical diagnosties in patients with intractable epilepsy. Zhurnal Voprosy neirokhirurgii im. N.N. Burdenko = Burdenko’s Journal of Neurosurgery. 2020;84(1):109–17. (In Russ., In Engl.). DOI: 10.17116/neiro202084011109.

6. Von Oertzen T.J. PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol 2018;31(2):184–91. DOI: 10.1097/WCO.0000000000000527

7. Laohathai C., Ebersole J.S., Mosher J.C. et al. Practical fundamentals of clinical MEG interpretation in epilepsy. Front Neurol 2021;12:722986. DOI: 10.3389/fneur.2021.722986

8. Willems L.M., Reif P.S., Spyrantis A. et al. Invasive EEG-electrodes in presurgical evaluation of epilepsies: systematic analysis of implantation-, video-EEG-monitoring- and explantation-related complications, and review of literature. Epilepsy Behav 2019;91:30–7. DOI: 10.1016/j.yebeh.2018.05.012

9. Garcia-Lorenzo B., Del Pino-Sedeño T., Rocamora R. et al. Stereoelectroencephalography for refractory epileptic patients considered for surgery: systematic review, meta-analysis, and economic evaluation. Neurosurgery 2019;84(2):326–38. DOI: 10.1093/neuros/nyy261

10. Mullin J.P., Shriver M., Alomar S. et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography–related complications. Epilepsia 2016;57(3):386–401. DOI: 10.1111/epi.13298

11. Catenoix H., Mauguière F., Guénot M. et al. SEEG-guided thermocoagulations: a palliative treatment of nonoperable partial epilepsies. Neurology 2008;71(21):1719–26. DOI: 10.1212/01.wnl.0000335166.20451.88

12. Guénot M., Isnard J., Catenoix H. et al. SEEG-guided RF-thermocoagulation of epileptic foci: a therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg 2011;36:61–78. DOI: 10.1007/978-3-7091-0179-7_4

13. Staudt M.D., Maturu S., Miller J.P. Radiofrequency energy and electrode proximity influences stereoelectroencephalography-guided radiofrequency thermocoagulation lesion size: an in vitro study with clinical correlation. Oper Neurosurg (Hagerstown) 2018;15(4):461–9. DOI: 10.1093/ons/opx291

14. Cossu M., Fuschillo D., Casaceli G. et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg 2015;123(6):1358–67. DOI: 10.3171/2014.12.JNS141968

15. Catenoix H., Bourdillon P., Guénot M., Isnard J. The combination of stereo-EEG and radiofrequency ablation. Epilepsy Res 2018;142:117–20. DOI: 10.1016/j.eplepsyres.2018.01.012

16. Kerezoudis P., Tsayem I.N., Lundstrom B.N., Van Gompel J.J. Systematic review and patient-level meta-analysis of radiofrequency ablation for medically refractory epilepsy: implications for clinical practice and research. Seizure 2022;102:113–9. DOI: 10.1016/j.seizure.2022.10.003

17. Bourdillon P., Rheims S., Catenoix H. et al. Surgical techniques: stereoelectroencephalography-guided radiofrequency-thermocoagulation (SEEG-guided RF-TC). Seizure 2020;77:64–8. DOI: 10.1016/j.seizure.2019.01.021

18. Fan X., Shan Y., Lu C. et al. Optimized SEEG-guided radiofrequency thermocoagulation for mesial temporal lobe epilepsy with hippocampal sclerosis. Seizure 2019;71:304–11. DOI: 10.1016/j.seizure.2019.08.011

19. Kang S.S., Park J.C., Yoon Y.J., Shin K.M. Morphologic analysis of water-cooled bipolar radiofrequency lesions on egg white in vitro. Korean J Pain 2012;25(3):151–4. DOI: 10.3344/kjp.2012.25.3.151

20. Bourdillon P., Isnard J., Catenoix H. et al. Stereo-electro-encephalography-guided radiofrequency thermocoagulation: from in vitro and in vivo data to technical guidelines. World Neurosurg 2016;94:73–9. DOI: 10.1016/j.wneu.2016.06.095

21. Vakharia V.N., Duncan J.S., Witt J.A. et al. Getting the best outcomes from epilepsy surgery. Ann Neurol 2018;83(4):676–90. DOI: 10.1002/ana.25205

22. Steriade C., Martins W., Bulacio J. et al. Localization yield and seizure outcome in patients undergoing bilateral SEEG exploration. Epilepsia 2019;60(1):107–20. DOI: 10.1111/epi.14624

23. Mirza F.A., Hall J.A. Radiofrequency thermocoagulation in refractory focal epilepsy: the Montreal Neurological Institute еxperience. Can J Neurol Sci 2021;48(5):626–39. DOI: 10.1017/cjn.2020.263


Review

For citations:


Gordeyeva E.A., Dimertsev A.V., Salamov I.P., Ivin N.O., Zuev A.A. Radiofrequency thermocoagulation parameters impact on lesion size during stereo-EEG. Russian journal of neurosurgery. 2025;27(1):22-32. (In Russ.) https://doi.org/10.24412/1683-3295-2025-27-1-22-32

Views: 180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X