Preview

Russian journal of neurosurgery

Advanced search

Can a complete excision of the injured site of the spinal cord lead to positive results?

https://doi.org/10.17650/1683-3295-2024-26-2-82-90

Abstract

Until now, there are no successful ways to restore the damaged spinal cord and its functions in severe spinal cord injury such as spinal cord contusion, rupture or intersection. This is largely due to the lack of treatment methods aimed at the chain of pathogenetic processes occurring in the nervous tissue after injury. The topic of restoration of spinal cord functions is taboo, often undesirable for discussion, and is influenced by clinical stereotypes. The article proposes to consider the method of treatment of spinal cord injury, using modern data, taking into account emerging pathophysiological processes at the site of injury and beyond. The use of new data and achievements of experimental science on severe spinal cord injury can be a serious step towards the development of new methods for the treatment of this pathology.

About the Authors

M. V. Lebenstein-Gumovski
N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department
Russian Federation

Mikhail V. Lebenstein‑Gumovski 

3 Bolshaya Sukharevskaya Sq., Moscow 129090



A. A. Grin
N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

3 Bolshaya Sukharevskaya Sq., Moscow 129090,

1 Ostrovitianov St., Moscow 11799



References

1. Illis L.S. Central nervous system regeneration does not occur. Spinal Cord 2012;50(4):259–63. DOI: 10.1038/sc.2011.132

2. Stewart F.T., Harte R.H. A case of severed spinal cord in which myelorrhaphy was followed by partial return of function. Philadelphia Med J 1902;9:1016–20.

3. Freeman L.W. Editors Proceedings, X Congreso Latinoamericano de Neurochirurgia. Brazil: Editorial Don Bosco, 1963. Pp. 135–44.

4. Freeman L.W. Return of spinal cord function in mammals after transecting lesions. Ann NY Acad Med Sci 1954;58(5):564–9. DOI: 10.1111/j.1749-6632.1954.tb54093.x

5. Freeman L.W. Experimental observations upon axonal regeneration in the transected spinal cord of mammals. Clin Neurosurg 1962;8:294–319. DOI: 10.1093/neurosurgery/8.cn_suppl_1.294

6. Karagyaur M.N., Makarevich P.I., Shevchenko E.K. et al. Modern approaches to peripheral nerve regeneration after injury: the prospects of gene and cell therapy. Geny i kletki = Genes & Cells 2017;12(1):6–14. (In Russ.). DOI: 10.23868/gc120633

7. Aleksandrov Yu.I., Anokhin K.V., Bezdenezhnykh B.N. et al. Neuron. Signal processing. Plastic. Modeling: A Fundamental Guide. Tyumen: Izd-vo Tumenskogo gos. un-ta, 2008. 548 p. (In Russ.).

8. Rowland J.W., Hawryluk G.W., Kwon B., Fehlings M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25(5):E2. DOI: 10.3171/FOC.2008.25.11.E2

9. Chen Y., Tang Y., Vogel L.C., Devivo M.J. Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 2013;19(1):1–8. DOI: 10.1310/sci1901-1

10. Park D.H., Lee J.H., Borlongan C.V. et al. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev Rep 2011;7(1):181–94. DOI: 10.1007/s12015-010-9163-0

11. Silva N.A., Sousa N., Reis R.L., Salgado A.J. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2014;114:25–57. DOI: 10.1016/j.pneurobio.2013.11.002

12. Smirnov V.A., Grin A.A., Krylov V.V. Regenerative methods of treatment of spinal cord injury. Literature review. Part 1. Neirokhirurgiya = Russian Journal of Neurosurgery 2019;21(2):66– 75. (In Russ.). DOI: 10.17650/1683-3295-2019-21-2-66-75

13. Hechler D., Nitsch R., Hendrix S. Green-fluorescent-proteinexpressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 2006;52(1):160–9. DOI: 10.1016/j.brainresrev.2006.01.005

14. Önger M.E., Delibaş B., Türkmen A.P. et al. The role of growth factors in nerve regeneration. Drug Discov Ther 2017;10(6): 285–91. DOI: 10.5582/ddt.2016.01058

15. Thomson C.E., Hunter A.M., Griffiths I.R. et al. Murine spinal cord explants: a model for evaluating axonal growth and myelination in vitro. J Neurosci Res 2006;84(8):1703–15. DOI: 10.1002/jnr.21084

16. Auerbach A.D., Liu Q., Ghosh R. et al. Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion 1990;30(8):682–7. DOI: 10.1046/j.1537-2995.1990.30891020324.x

17. Beattie M.S., Hermann G.E., Rogers R.C., Bresnahan J.C. Cell death in models of spinal cord injury. Prog Brain Res 2002;137: 37–47. DOI: 10.1016/s0079-6123(02)37006-7

18. Hall E.D., Springer J.E. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 2004;1(1):80–100. DOI: 10.1602/neurorx.1.1.80

19. Gris P., Tighe A., Levin D. et al. Transcriptional regulation of scar gene expression in primary astrocytes. Glia 2007;55(11):1145–55. DOI: 10.1002/glia.20537

20. Dougherty K.J., Hochman S. Spinal cord injury causes plasticity in a subpopulation of lamina I GABAergic interneurons. J Neurophysiol 2008;100(1):212–23. DOI: 10.1152/jn.01104.2007

21. Stab wounds of the spinal cord. Br Med J 1978;1(6120):1093–4.

22. Manzone P., Domenech V., Forlino D. Stab injury of the spinal cord surgically treated. J Spinal Disord 2001;14(3):264–7. DOI: 10.1097/00002517-200106000-00014

23. Dlouhy B.J., Dahdaleh N.S., Howard M.A. 3rd. Radiographic and intraoperative imaging of a hemisection of the spinal cord resulting in a pure brown-séquard syndrome: сase report and review of the literature. J Neurosurg Sci 2013;57(1):81–6.

24. Canavero S. The “Gemini” spinal cord fusion protocol: reloaded. Surg Neurol Int 2015;6:18. DOI: 10.4103/2152-7806.150674

25. Akshulakov S.K., Kerimbaev T.T., Aleinikov V.G. A review of methods for restoring the conduction of an injured area of the spinal cord by a combination of combined ways of restoring the damaged area and stimulating axon regeneration. Neirokhirurgiya i nevrologiya Kazakhstana = Neurosurgery and Neurology of Kazakhstan 2015;3(40):40–4. (In Russ.).

26. Aganesov A.G. The future and the past of surgery for the complicated spine trauma. Hirurgiya. Zhurnal im. N.I. Pirogova = Pirogov Russian Journal of Surgery 2013;1:5–12. (In Russ.).

27. Sledge J., Graham W.A., Westmoreland S. et al. Spinal cord injury models in non human primates: are lesions created by sharp instruments relevant to human injuries? Med Hypotheses 2013;81(4):747–8. DOI: 10.1016/j.mehy.2013.07.040

28. Grin A.A., Kordonskiy A.Yu., Lʼvov I.S. et al. The timing in surgery of spinal trauma (a review). Neirokhirurgiya = Russian Journal of Neurosurgery 2018;20(3):81–90. (In Russ.). DOI: 10.17650/1683-3295-2018-20-3-81-90

29. Yoshida Y., Kataoka H., Kanchiku T. et al. Transection method for shortening the rat spine and spinal cord. Exp Ther Med 2013;5(2):384–8. DOI: 10.3892/etm.2012.841

30. Assinck P., Duncan G.J., Hilton B.J. et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017;20(5):637–47. DOI: 10.1038/nn.4541

31. Dalamagkas K., Tsintou M., Seifalian A., Seifalian A.M. Translational regenerative therapies for chronic spinal cord injury. Int J Mol Sci 2018;19(6):1776. DOI: 10.3390/ijms19061776

32. Donovan J., Kirshblum S. Clinical trials in traumatic spinal cord injury. Neurotherapeutics 2018;15(3):654–68. DOI: 10.1007/s13311-018-0632-5

33. David S., Aguayo A.J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981;214(4523):931–3. DOI: 10.1126/science.6171034

34. Tabakow P., Raisman G., Fortuna W. et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 2014;23(12):1631–55. DOI: 10.3727/096368914X685131

35. Fitch M.T., Silver J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 2008;209(2):294–301. DOI: 10.1016/j.expneurol.2007.05.014

36. Moore D.L., Blackmore M.G., Hu Y. et al. KLF family members regulate intrinsic axon regeneration ability. Science 2009;326(5950):298–301. DOI: 10.1126/science.1175737

37. Ankeny D.P., McTigue D.M., Jakeman L.B. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 2004;190(1):17–31. DOI: 10.1016/j.expneurol.2004.05.045

38. Bolshakov I.N., Krivopalov V.A., Kaptyuk G.I. et al. Transplantation of a cellular polysaccharide scaffold for partial spinal rupture in rats. Fundamentalnye issledovaniya = Fundamental Research 2012;2:31–4. (In Russ.).

39. Smirnov V. A., Grin A.A. Regenerative treatment of spinal cord injury. Literature review. Part 4. Neirokhirurgiya = Russian Journal of Neurosurgery 2020;22(1):83–92. (In Russ.). DOI: 10.17650/1683-3295-2020-22-1-83-92

40. Gage F.H., Temple S. Neural stem cells: generating and regenerating the brain. Neuron 2013;80(3):588–601. DOI: 10.1016/j.neuron.2013.10.037

41. Kouhzaei S., Rad I., Mousavidoust S., Mobasheri H. Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in ratʼs spinal cord. Neurol Res 2013;35(4):415–23. DOI: 10.1179/1743132812Y.0000000133

42. Lu X., Perera T.H., Aria A.B., Callahan L.A.S. Polyethylene glycol in spinal cord injury repair: a critical review. J Exp Pharmacol 2018;10:37–49. DOI: 10.2147/JEP.S148944

43. Kim C.Y., Sikkema W.K.A., Kim J. et al. Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection. Neural Regen Res 2018;13(8):1440–6. DOI: 10.4103/1673-5374.235301

44. Ren S., Liu Z.H., Wu Q. et al. Polyethylene glycol-induced motor recovery after total spinal transection in rats. CNS Neurosci Ther 2017;23(8):680–5. DOI: 10.1111/cns.12713

45. Sretavan D.W., Chang W., Hawkes E. et al. Microscale surgery on single axons. Neurosurgery 2005;57(4):635–46; discussion 635–46.

46. Canavero S., Ren X., Kim C.Y. Reconstructing the severed spinal cord. Surg Neurol Int 2017;8:285. DOI: 10.4103/sni.sni_406_17

47. Canavero S., Ren X. Advancing the technology for head transplants: from immunology to peripheral nerve fusion. Surg Neurol Int 2019;10:240. DOI: 10.25259/SNI_495_2019

48. Canavero S. HEAVEN: The head anastomosis venture Project outline for the first human head transplantation with spinal linkage (GEMINI). Surg Neurol Int 2013;4(Suppl 1):S335–42. DOI: 10.4103/2152-7806.113444

49. Cho Y., Borgens R.B. Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2012;233(1):126–44. DOI: 10.1016/j.expneurol.2011.09.028

50. Gao W., Li J., Cirillo J. et al. Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. Langmuir 2014;30(26):7778–88. DOI: 10.1021/la500033b

51. Kim C.Y., Sikkema W.K., Hwang I.K. et al. Spinal cord fusion with PEG-GNRs (TexasPEG): neurophysiological recovery in 24 hours in rats. Surg Neurol Int 2016;7(Suppl 24):S632–6. DOI:10.4103/2152-7806.190475

52. Nehrt A., Hamann K., Ouyang H., Shi R. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord. J Neurotrauma 2010;27(1):151–61. DOI: 10.1089/neu.2009.0993

53. Bamba R., Riley D.C., Kelm N.D. et al. A novel technique using hydrophilic polymers to promote axonal fusion. Neural Regen Res 2016;11(4):525–8. DOI: 10.4103/1673-5374.180724

54. Bittner G.D., Rokkappanavar K.K., Peduzzi J.D. Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords. Neural Regen Res 2015;10(9):1406–8. DOI: 10.4103/1673-5374.162772

55. Kerschensteiner M., Schwab M., Lichtman J., Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 2005;11(5):572–7. DOI: 10.1038/nm1229

56. Ren S., Liu Z., Kim C.Y. et al. Reconstruction of the spinal cord of spinal transected dogs with polyethylene glycol. Surg Neurol Int 2019;10:50. DOI: 10.25259/SNI-73-2019

57. Kim C.Y. PEG-assisted reconstruction of the cervical spinal cord in rats: effects on motor conduction at 1 h. Spinal Cord 2016;54(10):910–2. DOI: 10.1038/sc.2016.72

58. Nishio T., Fujiwara H., Kanno I. Immediate elimination of injured white matter tissue achieves a rapid axonal growth across the severed spinal cord in adult rats. Neurosci Res 2018;131:19–29. DOI: 10.1016/j.neures.2017.10.011

59. Yildirim F.B., Sarikcioglu L. Marie Jean Pierre Flourens (1794– 1867): an extraordinary scientist of his time. J Neurol Neurosurg Psychiatry 2007;78(8):852. DOI: 10.1136/jnnp.2007.118380


Review

For citations:


Lebenstein-Gumovski M.V., Grin A.A. Can a complete excision of the injured site of the spinal cord lead to positive results? Russian journal of neurosurgery. 2024;26(2):82-90. (In Russ.) https://doi.org/10.17650/1683-3295-2024-26-2-82-90

Views: 400


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X