Preview

Russian journal of neurosurgery

Advanced search

Transcranial focused ultrasound in neurosurgery: therapeutic possibilities and experimental studies

https://doi.org/10.17650/1683-3295-2023-25-2-140-147

Abstract

Introduction. Since modern technologies have managed to bypass the bone barrier for ultrasound waves, the arsenal of neurosurgical instruments has been replenished with transcranial focused ultrasound (FUS). The combination of this method with magnetic resonance imaging (MRI) allows you to perform operations under the direct control of the location of the focus of destruction and the degree of its severity during the procedure.

Aim. To present a review of the literature on the modern application of the focused ultrasound under MRI control (MRgFUS) method in neurosurgery. Ultrasound has been used in medicine mainly for diagnostic purposes for decades. Modern technologies have led to the possibility of using ultrasound in neurosurgery for therapeutic purposes without open intervention. Today transcranial MRgFUS is an innovation in medicine, expanding the horizons of minimally invasive surgery. The conducted studies of the focused ultrasound method prove the effective treatment of tremor and a number of other pathologies, and many scientific projects represent promising areas.

Conclusion. The use of the MRgFUS method opens up broad prospects.

About the Authors

V. I. Skvortsova
Federal Center of Brain Research and Neurotechnology
Russian Federation

Bld. 10, 1 Ostrovytianova St., Moscow 117342



V. V. Belousov
Federal Center of Brain Research and Neurotechnology
Russian Federation

Bld. 10, 1 Ostrovytianova St., Moscow 117342



V. M. Dzhafarov
Federal Center of Brain Research and Neurotechnology
Russian Federation

Vidzhai Maisovich Dzhafarov

Bld. 10, 1 Ostrovytianova St., Moscow 117342



I. V. Senko
Federal Center of Brain Research and Neurotechnology
Russian Federation

Bld. 10, 1 Ostrovytianova St., Moscow 117342



V. V. Krylov
Federal Center of Brain Research and Neurotechnology; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; N.V. Sklifosovsky Research Institute for Emergency Medicine, Moscow Healthcare Department
Russian Federation

Bld. 10, 1 Ostrovytianova St., Moscow 117342; 1 Ostrovityanova St., Moscow 117997; 3 Bolshaya Sukharevskaya Sq., Moscow 129090



References

1. Lindtsrom P. Prefrontal ultrasonic irradiation – a substitute for lobotomy. Arch Neurol Psychiatry 1954;72(4):399. DOI: 10.1001/archneurpsyc.1954.02330040001001

2. Meng Y., Hynynen K., Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2020;17(1):7–22. DOI: 10.1038/s41582-020-00418-z

3. Quadri S., Waqas M., Khan I. et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018;44(2):e16. DOI: 10.3171/2017.11.focus17610

4. Jung N., Chang J. Magnetic resonance-guided focused ultrasound in neurosurgery: taking lessons from the past to inform the future. J Korean Med Sci 2018;33(44). DOI: 10.3346/jkms.2018.33.e279

5. Wintermark M., Druzgal J., Huss D. et al. Imaging findings in MR imaging-guided focused ultrasound treatment for patients with essential tremor. AJNR Am J Neuroradiol 2013;35(5):891–6. DOI: 10.3174/ajnr.A3808

6. Elias W., Huss D., Voss T. et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2013;369(7):640– 8. DOI: 10.1056/nejmoa1300962

7. Lipsman N., Schwartz M., Huang Y. et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 2013;12(5):462–8. DOI: 10.1016/s14744422(13)70048-6

8. Gallay M., Moser D., Rossi F. et al. Incisionless transcranial MR-guided focused ultrasound in essential tremor: cerebellothalamic tractotomy. J Ther Ultrasound 2016;4(1). DOI: 10.1186/s40349-016-0049-8

9. Elias W., Lipsman N., Ondo W. et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2016;375(8):730–9. DOI: 10.1056/nejmoa1600159

10. Mohammed N., Patra D., Nanda A. A meta-analysis of outcomes and complications of magnetic resonance-guided focused ultrasound in the treatment of essential tremor. Neurosurg Focus 2018;44(2):е4. DOI: 10.3171/2017.11.focus17628

11. Iorio-Morin C., Yamamoto K., Sarica C. et al. Bilateral focused ultrasound thalamotomy for essential tremor (BEST-FUS Phase 2 Trial). Mov Disord 2021;36(11):2653–62. DOI: 10.1002/mds.28716

12. Weidman E.K., Kaplitt M.G., Strybing K., Chazen J.L. Repeat magnetic resonance imaging-guided focused ultrasound thalamotomy for recurrent essential tremor: case report and review of MRI findings. J Neurosurg 2019;67(7):1–6.

13. Magara A., Bühler R., Moser D. et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J Ther Ultrasound 2014;2:11. DOI: 10.1186/2050-5736-2-11

14. Schlesinger I., Eran A., Sinai A. et al. MRI guided focused ultrasound thalamotomy for moderate-to-severe tremor in Parkinson’s disease. Parkinsons Dis 2015;2015:219149. DOI: 10.1155/2015/219149

15. Bond A., Shah B., Huss D. et al. safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremordominant Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74(12):1412. DOI: 10.1001/jamaneurol.2017.3098

16. Martínez-Fernández R., Máñez-Miró J., Rodríguez-Rojas R. et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N Engl J Med 2020;383(26):2501–13. DOI: 10.1056/nejmoa2016311

17. Gallay M., Moser D., Magara A. et al. Bilateral MR-guided focused ultrasound pallidothalamic tractotomy for Parkinson’s disease with 1-year follow-up. Front Neurol 2021;12:601153. DOI: 10.3389/fneur.2021.601153

18. Halpern C.H., Santini V., Lipsman N. et al. Three-year follow-up of prospective trial of focused ultrasound thalamotomy for essential tremor. Neurology 2019;93(24):e2284–93. DOI: 10.1212/WNL.0000000000008561

19. Park Y., Jung N., Na Y., Chang J. Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Mov Disord 2019;34(5):727–34. DOI: 10.1002/mds.27637

20. Ferreira J.J., Mestre T.A., Lyons K.E. et al.; MDS task force on tremor and the MDS evidence based medicine committee. MDS evidence-based review of treatments for essential tremor. Mov Disord 2019;34(7):950–8. DOI: 10.1002/mds.27700)

21. Sinai A., Nassar M., Sprecher E. et al. Focused ultrasound thalamotomy in tremor dominant Parkinson’s disease: long-term results. J Parkinsons Dis 2022;12(1):199–206. DOI: 10.3233/JPD212810

22. Xu Y., He Q., Wang M. et al. Safety and efficacy of magnetic resonance imaging-guided focused ultrasound neurosurgery for Parkinson’s disease: a systematic review. Neurosurg Rev 2019;44(1):115–27. DOI: 10.1007/s10143-019-01216-y

23. Fasano A., De Vloo P., Llinas M. et al. Magnetic resonance imaging-guided focused ultrasound thalamotomy in Parkinson tremor: reoperation after benefit decay. Mov Disord 2018;33(5):848–9. DOI: 10.1002/mds.27348

24. Paff M., Boutet A., Neudorfer C. et al. Magnetic resonance-guided focused ultrasound thalamotomy to treat essential tremor in nonagenarians. Stereotact Funct Neurosurg 2020;98(3):182–6. DOI: 10.1159/000506817

25. Altinel Y., Alkhalfan F., Qiao N. et al. Outcomes in lesion surgery versus deep brain stimulation in patients with tremor: a systematic review and meta-analysis. World Neurosurg 2019;123:443–52.e8. DOI: 10.1016/j.wneu.2018.11.175

26. Harary M., Segar D., Hayes M. et al. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg 2019;126:e144–52. DOI: 10.1016/j.wneu.2019.01.281

27. Giordano M., Caccavella V., Zaed I. et al. Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry 2020;91(12):1270–8. DOI: 10.1136/jnnp-2020-323216

28. Nation D., Sweeney M., Montagne A. et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019;25(2):270–6. DOI: 10.1038/s41591-018-0297-y

29. Kovacs Z., Kim S., Jikaria N. et al. Disrupting the bloodbrain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci USA 2016;114(1):e75–84. DOI: 10.1073/pnas.1614777114

30. McDannold N., Arvanitis C., Vykhodtseva N. et al. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 2012;72(14):3652–63. DOI: 10.1158/0008-5472.can-12-0128

31. Okada K., Kudo N., Niwa K. et al. A basic study on sonoporation with microbubbles exposed to pulsed ultrasound. J Med Ultrason 2005;32(1):3–11. DOI: 10.1007/s10396-005-0031-5

32. Jordão J., Ayala-Grosso C., Markham K. et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 2010;5(5):e10549. DOI: 10.1371/journal.pone.0010549

33. Thévenot E., Jordão J., O’Reilly M. et al. Targeted delivery of selfcomplementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 2012;23(11):1144–55. DOI: 10.1089/hum.2012.013

34. Alli S., Figueiredo C., Golbourn B. et al. Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery. J Control Release 2018;281:29–41. DOI: 10.1016/j.jconrel.2018.05.005

35. Mei J., Cheng Y., Song Y. et al. Experimental study on targeted methotrexate delivery to the rabbit brain via magnetic resonance imaging-guided focused ultrasound. J Ultrasound Med 2009;28(7):871–80. DOI: 10.7863/jum.2009.28.7.871

36. Park J., Aryal M., Vykhodtseva N. et al. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release 2017;250:77–85. DOI: 10.1016/j.jconrel.2016.10.011

37. Mainprize T., Lipsman N., Huang Y. et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 2019;9(1). DOI: 10.1038/s41598-018-36340-0

38. Lipsman N., Meng Y., Bethune A. et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 2018;9(1):2336 DOI: 10.1038/s41467018-04529-6

39. Abrahao A., Meng Y., Llinas M. et al. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun 2019;10(1):4373. DOI: 10.1038/s41467-019-12426-9.

40. Yamaguchi T., Hori T., Hori H. et al. Magnetic resonance-guided focused ultrasound ablation of hypothalamic hamartoma as a disconnection surgery: a case report. Acta Neurochir (Wien) 2020;162(10):2513–7. DOI: 10.1007/s00701-020-04468-6

41. Bader K., Bouchoux G., Holland C. Sonothrombolysis. Adv Exp Med Biol 2016:339–62. DOI: 10.1007/978-3-319-22536-4_19

42. Phenix C., Togtema M., Pichardo S. et al. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 2014;17(1):136–53. DOI: 10.18433/j3zp5f

43. Pajek D., Burgess A., Huang Y. et al. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. Ultrasound Med Biol 2014;40(9):2151–61. DOI: 10.1016/j.ultrasmedbio.2014.03.026

44. Chen X., Leeman J., Wang J. et al. New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging. Ultrasound Med Biol 2014;40(1):258–62. DOI: 10.1016/j.ultrasmedbio.2013.08.021

45. Wright C., Hynynen K., Goertz D. In vitro and in vivo highintensity focused ultrasound thrombolysis. Invest Radiol 2012;47(4):217–25. DOI: 10.1097/rli.0b013e31823cc75c

46. Westermark S., Wiksell H., Elmqvist H. et al. Effect of externally applied focused acoustic energy on clot disruption in vitro. Clin Sci (Lond) 1999;97(1):67–71. DOI: 10.1042/cs19980379

47. Rosenschein U., Furman V., Kerner E. Ultrasound imaging-guided noninvasive ultrasound thrombolysis. Circulation 2000;102(2):238– 45. DOI: 10.1161/01.cir.102.2.238

48. Maxwell A., Cain C., Duryea A. et al. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy – histotripsy. Ultrasound Med Biol 2009;35(12):1982–94. DOI: 10.1016/j.ultrasmedbio.2009.07.001


Review

For citations:


Skvortsova V.I., Belousov V.V., Dzhafarov V.M., Senko I.V., Krylov V.V. Transcranial focused ultrasound in neurosurgery: therapeutic possibilities and experimental studies. Russian journal of neurosurgery. 2023;25(2):140-147. (In Russ.) https://doi.org/10.17650/1683-3295-2023-25-2-140-147

Views: 520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X