Preview

Нейрохирургия

Расширенный поиск

Организация и современное представление о речевой функции головного мозга: обзор литературы

https://doi.org/10.17650/1683-3295-2022-24-3-80-89

Аннотация

Введение. История изучения речевой функции головного мозга простирается с середины XIX в. Первые исследования обнаружили корковые представительства речи в головном мозге, были предложены различные теории устройства речевой функции. Технологический прорыв XX в. дал возможность изучать не только корковые отделы речевой функции, но и сложные связи белого вещества, немаловажные для практической работы нейрохирургов. По мере углубленного изучения речи были пересмотрены старые теории, выдвинуты новые. Современные методы исследования раскрыли сложность организации речи, многофункциональность речевых трактов. 

Цель исследования - анализ и систематизация исторических и современных научных данных об организации речевой функции головного мозга, а также способов предоперационной оценки и интраоперационных методов идентификации речевых зон коры больших полушарий. 

Материалы и методы. В результате поиска данных в интернет-ресурсе PubMed для анализа отобрано 77 статей, опубликованных между 1954 и 2020 гг. 

Результаты. Исследования особенностей работы речевой функции во множестве представлены в современной научной литературе, и число публикаций растет с каждым годом. Одни исследователи прицельно изучают работы конкретного аспекта речи: корковое представительство, конкретный речевой тракт. Другие - имеют дело с общими последствиями нарушения речи после удаления опухолей, инсультов, травм. Авторской группой проведены структурирование и систематизация многочисленных данных из разнородных источников информации. 

Заключение. Речевая функция головного мозга - один из наиболее сложно организованных аспектов высшей нервной деятельности центральной нервной системы, изучение которого активно продолжается во всем мире. Внедрение таких революционных методов исследования, как интраоперационное картирование коры головного мозга, магнитно-резонансная трактография, привнесло обилие новой информации касательно морфофункциональных особенностей речевой функции. Необходимы дальнейшее изучение языковой функции головного мозга и систематизация полученных данных, более глубокое понимание тонких деталей работы речевого аппарата. Продвижение в этом направлении предоставит нейрохирургам возможность избегать нежелательного неврологического дефицита в области коммуникативной способности - одной из самых важных, улучшая тем самым качество жизни пациентов. 

Об авторах

А. М. Исмаилов
ФГБУ «Национальный медико-хирургический центр им. Н. И. Пирогова» Минздрава России
Россия

Исмаилов Алы Мехтиевич.

105203 Москва, ул. Нижняя Первомайская, 70.



А. А. Зуев
ФГБУ «Национальный медико-хирургический центр им. Н. И. Пирогова» Минздрава России
Россия

105203 Москва, ул. Нижняя Первомайская, 70.



Список литературы

1. Geschwind N. Disconnexion syndromes in animals and man. I. Brain 1965;88(2):237-94. DOI: 10.1093/brain/88.2.237

2. Tanabe H., Sawada T., Inoue N. et al. Conduction aphasia and arcuate fasciculus. Acta Neurol Scand 1987;76(6):422-7. DOI: 10.1111/j.1600-0404.1987.tb03597.x

3. Mohr J.P., Pessin M.S., Finkelstein S. et al. Broca aphasia: Pathologic and clinical. Neurology 1978;28(4):311-24. DOI: 10.1212/wnl.28.4.311

4. Hickok G., Erhard P., Kassubek J. A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: Implications for the explanation of conduction aphasia. Neurosci Lett 2000;87(2):156-60. DOI: 10.1016/s0304-3940(00)01143-5

5. Rauschecker J.P., Scott S.K. Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat Neurosci 2009;12:718-24. DOI: 10.1038/nn.2331

6. Hickok G., Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 2004;92(1-2):67-99. DOI: 10.1016/j.cognition.2003.10.011

7. Damasio A.R. Aphasia. N Engl J Med 1992;326(8):531-9. DOI: 10.1056/NEJM199202203260806

8. Rauschecker J.P., Scott S.K. Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat Neurosci 2009;12(6):718-24. DOI: 10.1038/nn.2331

9. Buchanan T.W., Lutz K., Mirzazade S. et al. Recognition of emotional prosody and verbal components of spoken language: An fMRI study. Brain Res Cogn Brain Res 2000;9(3):227-38. DOI: 10.1016/s0926-6410(99)00060-9

10. George M.S., Parekh P.I., Rosinsky N. et al. Understanding emotional prosody activates right hemisphere regions. Arch Neurol 1996;53(7):665-70. DOI: 10.1001/archneur.1996.00550070103017

11. Imaizumi S., Mori K., Kiritani S. et al. Vocal identification of speaker and emotion activates different brain regions. Neuroreport 1997;8(12):2809-12. DOI: 10.1097/00001756199708180-00031

12. Pell M.D. Fundamental frequency encoding of linguistic and emotional prosody by right hemisphere-damaged speakers. Brain Lang 1999;69(2):161-92. DOI: 10.1006/brln.1999.2065

13. Agrawal A., Kapfhammer J.P., Kress A. et al. Josef Klingler's models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery 2011;69(2):238-52; discussion 252-4. DOI: 10.1227/NEU.0b013e318214ab79

14. Axer H., Klingner C.M., Prescher A. Fiber anatomy of dorsal and ventral language streams. Brain Lang 2013;127(2):192-204. DOI: 10.1016/j.bandl.2012.04.015

15. Moseley M.E., Cohen Y., Kucharczyk J. et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176(2):439-45. DOI: 10.1148/radiology.176.2.2367658

16. Kochunov P., Thompson P.M., Lancaster J.L. et al. Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: Tract-based spatial statistics study of aging. Neuroimage 2007;35(2):478-87. DOI: 10.1016/j.neuroimage.2006.12.021

17. de Benedictis A., Duffau H., Paradiso B. et al. Anatomo-functional study of the temporo-parieto-occipital region: Dissection, tractographic and brain mapping evidence from a neurosurgical perspective. J Anat 2014;225(2):132-51. DOI: 10.1111/joa.12204

18. Leclercq D., Duffau H., Delmaire C. et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 2010;112(3):503-11. DOI: 10.3171/2009.8.JNS09558

19. Meyer L., Cunitz K., Obleser J., Friederici A.D. Sentence processing and verbal working memory in a white-matter-disconnection patient. Neuropsychologia 2014;61:190-6. DOI: 10.1016/j.neuropsychologia.2014.06.014

20. Bello L., Gambini A., Castellano A. et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008;39(1):369-82. DOI: 10.1016/j.neuroimage.2007.08.031

21. Nimsky C., Ganslandt O., Hastreiter P. et al. Intraoperative diffusion-tensor MR imaging: Shifting of white matter tracts during neurosurgical procedures - initial experience. Radiology 2005;234(1):218-25. DOI: 10.1148/radiol.2341031984

22. Penfield W. Combined regional and general anesthesia for craniotomy and cortical exploration. I. Neurosurgical considerations. Curr Res Anesth Analg 1954;33(3):145-55.

23. Penfield W., Roberts L. Speech and Brain-Mechanisms. Princeton, NJ: Princeton University Press, 1959. 302 p.

24. Lee Y.S., Lueders H., Dinner D.S. et al. Recording of auditory evoked potentials in man using chronic subdural electrodes. Brain 1984;107(Pt 1):115-31. DOI: 10.1093/brain/107.1.115

25. Lesser R.P., Lueders H., Dinner D.S. et al. The location of speech and writing functions in the frontal language area. Results of extraoperative cortical stimulation. Brain 1984;107(Pt 1): 275-91. DOI: 10.1093/brain/107.1.275

26. Duffau H., Moritz-Gasser S., Mandonnet E. et al. A re-examination of neural basis of language processing: Proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 2014;131:1-10. DOI: 10.1016/j.bandl.2013.05.011

27. Benzagmout M., Gatignol P., Duffau H. Resection of World Health Organization Grade II gliomas involving Broca's area: Methodological and functional considerations. Neurosurgery 2007;61(4):741-52; discussion 752-3. DOI: 10.1227/01.NEU.0000298902.69473.77

28. Krainik A., Duffau H., Capelle L. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 2004;62(8):1323-32. DOI: 10.1212/01.wnl.0000120547.83482.b1

29. de Witt Hamer P.C., Moritz-Gasser S., Gatignol P., Duffau H. Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 2011;32(6):962-73. DOI: 10.1002/hbm.21082

30. Gil-Robles S., Duffau H. Surgical management of World Health Organization Grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus 2010;28(2):E8. DOI: 10.3171/2009.12.FOCUS09236

31. Haglund M.M., Berger M.S., Shamseldin M. et al. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 1994;34(4):567-76; discussion 576. DOI: 10.1227/00006123-199404000-00001

32. Roux F.-E., Boulanouar K., Lotterie J.A. et al. Language functional magnetic resonance imaging in preoperative assessment of language areas: Correlation with direct cortical stimulation. Neurosurgery 2003;52(6):1335-45; discussion 1345-7. DOI: 10.1227/01.neu.0000064803.05077.40

33. Rutten G.J.M., Ramsey N.F., van Rijen P.C. et al. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 2002;51(3):350-60. DOI: 10.1002/ana.10117

34. Spena G., Nava A., Cassini F. Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes. Acta Neurochir (Wien) 2010;152(11):1835-46. DOI: 10.1007/s00701-010-0764-9

35. Bello L., Gallucci M., Fava M. et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 2007;60(1):67-80; discussion 80-2. DOI: 10.1227/01.NEU.0000249206.58601.DE

36. Corina D.P., Loudermilk B.C., Detwiler L. et al. Analysis of naming errors during cortical stimulation mapping: Implications for models of language representation. Brain Lang 2010;115(2):101-12. DOI: 10.1016/j.bandl.2010.04.001

37. Mandonnet E., Gatignol P., Duffau H. Evidence for an occipitotemporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 2009;111(7):601-5. DOI: 10.1016/j.clineuro.2009.03.007

38. Schwartz T.H., Devinsky O., Doyle W., Perrine K. Functionspecific high-probability “nodes” identified in posterior language cortex. Epilepsia 1999;40(5):575-83. DOI: 10.1111/j.1528-1157.1999.tb05559.x

39. Lucas 2nd T.H., McKhann 2nd G.M., Ojemann G.A. Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg 2004;101(3):449-57. DOI: 10.3171/jns.2004.101.3.0449

40. Shulman G.L., Pope D.L.W., Astafiev S.V. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 2010;30(10):3640-51. DOI: 10.1523/JNEUROSCI.4085-09.2010

41. Karnath H.-O., Perenin M.-T. Cortical control of visually guided reaching: Evidence from patients with optic ataxia. Cereb Cortex 2005;15(10):1561-9. DOI: 10.1093/cercor/bhi034

42. Kellmeyer P., Ziegler W., Peschke C. et al. Fronto-parietal dorsal and ventral pathways in the context of different linguistic manipulations. Brain Lang 2013;127(2):241-50. DOI: 10.1016/j.bandl.2013.09.011

43. Goranskaya D., Kreitewolf J., Mueller J.L. et al. Fronto-parietal contributions to phonological processes in successful artificial grammar learning. Front Hum Neurosci 2016;10:551. DOI: 10.3389/fnhum.2016.00551

44. Herbet G., Moritz-Gasser S., Boiseau M. et al. Converging evidence for a cortico-subcortical network mediating lexical retrieval. Brain 2016;139(11):3007-21. DOI: 10.1093/brain/aww220

45. van Geemen K., Herbet G., Moritz-Gasser S., Duffau H. Limited plastic potential of the left ventral premotor cortex in speech articulation: Evidence from intraoperative awake mapping in glioma patients. Hum Brain Mapp 2014;35(4):1587-96. DOI: 10.1002/hbm.22275

46. Maldonado I.L., Moritz-Gasser S., Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct 2011;216(3):263-74. DOI: 10.1007/s00429-011-0309-x

47. Timpert D.C., Weiss P.H., Vossel S. et al. Apraxia and spatial inattention dissociate in left hemisphere stroke. Cortex 2015;71:349-58. DOI: 10.1016/j.cortex.2015.07.023

48. Kinoshita M., Nakajima R., Shinohara H. et al. Chronic spatial working memory deficit associated with the superior longitudinal fasciculus: a study using voxel-based lesion-symptom mapping and intraoperative direct stimulation in right prefrontal glioma surgery. J Neurosurg 2016;125(4):1024-32. DOI: 10.3171/2015.10.JNS1591

49. Li M., Zhang Y., Song L. et al. Structural connectivity subserving verbal fluency revealed by lesion-behavior mapping in stroke patients. Neuropsychologia 2017;101:85-96. DOI: 10.1016/j.neuropsychologia.2017.05.008

50. Sarubbo S., de Benedictis A., Merler S. et al. Towards a functional atlas of human white matter. Hum Brain Mapp 2015;36(8):3117-36. DOI: 10.1002/hbm.22832

51. Zemmoura I., Herbet G., Moritz-Gasser S. et al. New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping. Hum Brain Mapp 2015;36(6):2215-30. DOI: 10.1002/hbm.22766

52. Toba M.N., Migliaccio R., Batrancourt B. et al. Common brain networks for distinct deficits in visual neglect. A combined structural and tractography MRI approach. Neuropsychologia 2018;115:167-78. DOI: 10.1016/j.neuropsychologia.2017.10.018

53. Bartolomeo P., Thiebaut de Schotten M., Doricchi F. et al. Left unilateral neglect as a disconnection syndrome. Cereb Cortex 2007;17(11):2479-90. DOI: 10.1093/cercor/bhl181

54. Maldonado I.L., Moritz-Gasser S., de Champfleur N.M. et al. Surgery for gliomas involving the left inferior parietal lobule: New insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg 2011;115(4):770-9. DOI: 10.3171/2011.5.JNS112

55. Herbet G., Lafargue G., Bonnetblanc F. et al. Inferring a dualstream model of mentalizing from associative white matter fibres disconnection. Brain 2014;137(Pt 3):944-59. DOI: 10.1093/brain/awt370

56. Nakajima R., Yordanova Y.N., Duffau H. et al. Neuropsychological evidence for the crucial role of the right arcuate fasciculus in the face-based mentalizing network: a disconnection analysis. Neuropsychologia 2018;115:179-87. DOI: 10.1016/j.neuropsychologia.2018.01.024

57. Hattori T., Ito K., Nakazawa C. et al. Structural connectivity in spatial attention network: Reconstruction from left hemispatial neglect. Brain Imaging Behav 2018;12(2):309-23. DOI: 10.1007/s11682-017-9698-7

58. Suchan J., Umarova R., Schnell S. et al. Fiber pathways connecting cortical areas relevant for spatial orienting and exploration. Hum Brain Mapp 2014;35(3):1031-43. DOI: 10.1002/hbm.22232

59. Chen X., Zhao Y., Zhong S. et al. The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: Left for speech and right for music. Brain Struct Funct 2018;223(4):2013-24. DOI: 10.1007/s00429-018-1608-2

60. Conner A.K., Briggs R.G., Sali G. et al. A Connectomic Atlas of the Human Cerebrum-Chapter 13: Tractographic description of the inferior fronto-occipital fasciculus. Oper Neurosurg (Hagerstown) 2018;15(Suppl 1):S436-43. DOI: 10.1093/ons/opy267

61. Zhang J., Wei X., Xie S. et al. Multifunctional roles of the ventral stream in language models: Advanced segmental quantification in post-stroke aphasic patients. Front Neurol 2018;9:89. DOI: 10.3389/fneur.2018.00089

62. Martino J., de Lucas E.M. Subcortical anatomy of the lateral association fascicles of the brain: a review. Clin Anat 2014;27(4):563-9. DOI: 10.1002/ca.22321

63. Gil-Robles S., Carvallo A., del Mar Jimenez M. et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery 2013;72(4):678-86. DOI: 10.1227/NEU.0b013e318282a361

64. Mandelli M.L., Caverzasi E., Binney R.J. et al. Frontal white matter tracts sustaining speech production in primary progressive aphasia. J Neurosci 2014;34(29):9754-67. DOI: 10.1523/JNEUROSCI.3464-13.2014

65. Agosta F., Henry R.G., Migliaccio R. et al. Language networks in semantic dementia. Brain 2010;133(Pt 1):286-99. DOI: 10.1093/brain/awp233

66. Papagno C., Miracapillo C., Casarotti A. et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain 2011;134(Pt 2):405-14. DOI: 10.1093/brain/awq283

67. Duffau H., Gatignol P., Moritz-Gasser S., Mandonnet E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol 2009;256(3):382-9. DOI: 10.1007/s00415-009-0053-9

68. Catani M., Dell'acqua F., Vergani F. et al. Short frontal lobe connections of the human brain. Cortex 2012;48(2):273-91. DOI: 10.1016/j.cortex.2011.12.001

69. Catani M., Mesulam M., Jakobsen E. et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 2013;136(Pt 8):2619-28. DOI: 10.1093/brain/awt163

70. Thiebaut de Schotten M., Dell'acqua F., Valabregue R., Catani M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 2012;48(1):82-96. DOI: 10.1016/j.cortex.2011.10.001

71. Aron A.R., Behrens T.E., Smith S. et al. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 2007;27(14):3743-52. DOI: 10.1523/JNEUROSCI.0519-07.2007

72. Kemerdere R., de Champfleur N.M., Deverdun J. et al. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 2016;263(1):157-67. DOI: 10.1007/s00415-015-7949-3

73. Vassal F., Boutet C., Lemaire J.-J., Nuti C. New insights into the functional significance of the frontal aslant tract: An anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br J Neurosurg 2014;28(5):685-7. DOI: 10.3109/02688697.2014.889810

74. Kinoshita M., de Champfleur N.M., Deverdun J. et al. Role of fronto-striatal tract and frontal aslant tract in movement and speech: An axonal mapping study. Brain Struct Funct 2015;220(6):3399-412. DOI: 10.1007/s00429-014-0863-0

75. Fujii M., Maesawa S., Motomura K. et al. Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca's area in the dominant hemisphere of patients with glioma. J Neurosurg 2015;122(6):1390-6. DOI: 10.3171/2014.10.JNS14945

76. Chernoff B.L., Teghipco A., Garcea F.E. et al. A role for the frontal aslant tract in speech planning: a neurosurgical case study. J Cogn Neurosci 2018;30(5):752-69. DOI: 10.1162/jocn_a_01244

77. Zyryanov A., Malyutina S., Dragoy O. Left frontal aslant tract and lexical selection: Evidence from frontal lobe lesions. Neuropsychologia 2020;147:107385. DOI: 10.1016/j.neuropsychologia.2020.107385


Рецензия

Для цитирования:


Исмаилов А.М., Зуев А.А. Организация и современное представление о речевой функции головного мозга: обзор литературы. Нейрохирургия. 2022;24(3):80-89. https://doi.org/10.17650/1683-3295-2022-24-3-80-89

For citation:


Ismailov A.M., Zuev A.A. Organization and current understanding of speech function of the brain: literature review. Russian journal of neurosurgery. 2022;24(3):80-89. (In Russ.) https://doi.org/10.17650/1683-3295-2022-24-3-80-89

Просмотров: 678


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-3295 (Print)
ISSN 2587-7569 (Online)
X