ХРОНИКА

ПРОТОКОЛЫ ЗАСЕДАНИЯ МОСКОВСКОГО НАУЧНОГО ОБЩЕСТВА НЕЙРОХИРУРГОВ В 2011 Г.

132-е заседание Московского общества нейрохирургов от 27 января 2011 г.

1. ЖУРНАЛ «ВОПРОСЫ НЕЙРОХИРУРГИИ ИМ. Н.Н. БУРДЕНКО» — ИСТОРИЯ. ПЕРЕМЕНЫ. ПЕРСПЕКТИВЫ

А.В. Козлов

НИИ нейрохирургии имени акад. Н.Н. Бурденко, Москва

2. ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ СИМПТОМАТИЧЕСКОЙ ЭПИЛЕПСИИ У ДЕТЕЙ

А.Г. Меликян

НИИ нейрохирургии им. акад. Н.Н. Бурденко РАМН, Москва

Оперировано 110 больных с медикаментозно-рефрактерной симптоматической эпилепсией младше 18 лет (средний возраст 8 лет), с почти равным соотношением височных и экстратемпоральных форм (57 и 53 соответственно). Структурно-анатомическая мозговая патология, лежащая в основе судорог, представлена в табл. 1.

Патология

Таблица 1

	№
Кортикальная дисплазия	45
Врожденные опухоли и гетеротопии	35
Кавернозные мальформации	10
Глиоз и/или рубцово-атрофические изменения	11
Факоматозы (S-W, TS)	2

В 2 случаях с фокальной кортикальной дисплазией в неокортексе височной доли имел место склероз ипсилатерального гиппокампа (так называемая «двойная патология»). В 3 других наблюдениях из числа больных с кортикальной дисплазией имела место гемимегалэнцефалия. У 13 больных с врожденными опухолями по соседству с этими индолетно протекающими новообразованиями имелись участки кортикальной дисплазии. В одном из наблюдений с гетеротопиями речь идет о гипоталамической гамартоме. У 3 больных, имевших глиотические изменения мозга, речь идет о склерозе гиппокампа. В 2 случаях с рубцово-атрофическими изменениями мозга их причиной был энцефалит Расмуссена.

Обследование включало в себя комплексную клинико-неврологическую оценку больных, анализ семиотической картины припадков и параметров развития детей (невролог, эпилептолог, нейропедиатр, нейропсихолог). Во всех случаях использовали длительный видео-ЭЭГ-мониторинг и МРТ мозга. В части случаев нейровизуализа-

ция дополнялась такими исследованиями, как ПЭТ, иктальный ОФФЭКТ и МЭГ. В отдельных случаях для уточнения доминантности больного полушария и исследования функции вербальной памяти прибегли к раздельной анестезии полушарий пропофолом (тест Вада).

За 5 последних лет (2006—2010 гг.) 110 больным произведено 126 операций. Из них: 10-c целью повторной резекции эпилептогенной коры; 6- для имплантации субдуральных решеток (электродов) с целью инвазивной ЭЭГ (см. также табл. 2).

Таблица 2

	№
Резекция эпилептогенной зоны (топэктомия)	56
Лобэктомия	34
Мультилобарные резекция	4
Гемисферотомия (функциональная)	13
Гемисферэктомия (анатомическая)	1
Эндоскопическая дисконнеция	1
Дисконнекция лобной доли	1

Немногочисленные осложнения представлены в табл. 3.

Осложнения

Таблица 3

	№	%
Транзиторный и незначительный невроло- гический дефицит; соматика	20	
Стойкий неврологический дефицит	4	3,5
Смерть	1	0,9
Хроническая субдуральная гематома	1	
Гидроцефалия	1	
Остеомиелит и менингоэнцефалит	1	

Таблина 4

Результаты лечения

	Исход по Engel	Всего	%
IA и IB	Полное прекращение припадков или только ауры	69	85
II	Редкие припадки (не чаще, чем $1-3$ в год) \pm ауры	6	7,5
III	Значительное урежение при- падков (> 50% в год)	1	1,2
IV	Без изменений или ухудшение	3	4

Все случаи с устойчивым неврологическим дефицитом отмечены у больных с височными формами (у 2- в виде снижения вербальной памяти; у 1- в виде дисфазии; у 1- гемипарез).

Катамнез прослежен у 80 детей и, варьируя от 3 мес. до 4 лет, составляет в среднем 15 мес. Кроме клинической оценки общего состояния,

частоты припадков и их характера, а также видео-ЭЭГ, оценивались параметры развития детей и их адапатации (психологом). Результаты лечения приведены в табл. 4.

Полиморфизм семиотической картины и кинематики припадков объясняется незрелостью мальформного мозга у большинства таких детей. Диагностика подобных случаев требует изощренных приемов, полноценного комплекса оборудования, а главное, развитой инфраструктуры и опыта.

Важно учесть также неуклонную стагнацию в психоречевом развитии, присутствующую в большинстве подобных случаев, и ограниченные резервы функциональной пластичности мозга, которые заметно хуже у детей старше 2—2,5 лет.

И то, и другое требует пересмотра стандартов отбора пациентов для хирургического лечения и их максимально раннего направления в специализированные центры.

133-е заседание Московского общества нейрохирургов от 24 февраля 2011 г.

1. НОВАЯ МЕТОДИКА ЛЕЧЕНИЯ ГЛИОБЛАСТОМ (КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ ПО ПРЕПАРАТУ АРG101, УГНЕТАЮЩЕГО МИГРАЦИОННЫЙ ПОТЕНЦИАЛ И ИНВАЗИВНОСТЬ КЛЕТОК ГЛИОБЛАСТОМЫ)

Dr. Claudia Kunz

Germany (Heidelberg), Apogenix GmbH.

2. ОПУХОЛИ ХОНДРОИДНОГО РЯДА КРАНИОФАЦИАЛЬНОГО РАСПРОСТРАНЕНИЯ. КЛИНИКА, ДИАГНОСТИКА, РЕЗУЛЬТАТЫ ЛЕЧЕНИЯ

Т.Г. Гаспарян

Российский онкологический научный центр имени Н.Н. Блохина, отделение онконейрохирургии, Москва

134-е заседание Московского общества нейрохирургов от 24 марта 2011 г.

1. КОМПЛЕКСНАЯ НЕЙРОДИАГНОСТИКА СТЕНОТИЧЕСКИХ И ОККЛЮЗИРУЮЩИХ ПОРАЖЕНИЙ СОННЫХ АРТЕРИЙ

Ф.Р. Мамедов

Нейрорентгенологическое отделение НИИ нейрохирургии им. акад. Н.Н. Бурденко РАМН, Москва

2. ОНКОЛОГИЧЕСКИЕ ПРИНЦИПЫ ХИРУРГИИ ЦЕРЕБРАЛЬНЫХ МЕТАСТАЗОВ РАКА: ВЫБОР ТАКТИКИ В ЗАВИСИМОСТИ ОТ СТРУКТУРНО-МОРФОЛОГИЧЕСКОЙ ОРГАНИЗАЦИИ

Д.М. Белов, В.Б. Карахан, А.Х. Бекяшев, В.А. Алешин, Я.В. Вишневская

Отделение нейрохирургии РОНЦ им. Н.Н. Блохина, Москва

Проведен анализ 103 пациентов с церебральными метастазами рака легкого, почки, молочной железы, проходивших лечение в отделении нейрохирургии НИИ клинической онкологии РОНЦ

им. Н.Н. Блохина РАМН в период с 2006 по 2009 г. Всем больным выполнено удаление одного или нескольких церебральных метастазов. В дальнейшем все пациенты получали химиолучевую

терапию в РОНЦ им. Н.Н. Блохина РАМН или по месту жительства. Больные распределялись не только по клиническим, но и по морфологическим характеристикам. Одним из параметров, определявших тактику и технику хирургического лечения, являлась структурная организация церебральных метастазов. Все метастазы по своей структурной организации распределены на 5 групп: метастазы солидной структуры, кистозной, солидно-кистозной, солидной с некрозом, солидной с кровоизлиянием. По объему и технике хирургического вмешательства выделялись следующие виды оперативного вмешательства: удаление метастаза единым узлом, фрагментарное удаление, имплантация резервуара Оммайа, субтотальное удаление. Все пациенты после операции проходили контрольное обследование каждые 3 мес. Наличие или отсутствие локального решидива оценивалось по данным МРТ головного мозга с контрастным усилением. На частоту локального рецидивирования влияли: техника удаления церебральных метастазов, их структурно-морфологические особенности. При удалении метастаза единым узлом локальные рецидивы отмечены в 6 $(8,4\pm3,3\%)$ случаях из 71, в сроки от 3 до 6 мес. При фрагментарном удалении метастазов локальные рецидивы отмечались в 15 (53,6 \pm 9,6%) случаях из 28, в сроки от 1 до 6 мес. Разница была статистически достоверной, p=0,005. При субтотальном удалении продолженный рост опухоли отмечался в 5 (100%) случаях из 5. в сроки до 1 мес. Имплантация резервуара Оммайа является циторедуктивной операцией,

направленной на эвакуацию кистозного компонента церебральных метастазов, в некоторых случаях отмечался рост солидной части опухоли, однако рост кистозного компонента удавалось контролировать во всех случаях на всем протяжении заболевания. Наибольшее число локальных рецидивов отмечалось при метастазах солидной структуры с некрозом — 13 случаев $(31,5\pm7,4\%)$ из 40. Наличие локального рецидива определяет более низкую продолжительность жизни больных с церебральными метастазами. Так в группе пациентов с наличием локального рецидива медиана выживаемости составила 10.4 мес. В группе пациентов без локального рецидива медиана выживаемости составила 21,0 мес (p=0,007). Объем хирургического вмешательства существенно влиял на продолжительность жизни больных с церебральными метастазами. Так, при удалении церебральных метастазов единым узлом медиана выживаемости составила 21,2 мес., при субтотальном и фрагментарном удалении 11,1 мес. Разница являлась статистически достоверной, p=0,03. У больных с имплантацией резервуара Оммайа медиана выживаемости в настоящее время не достигнута. По литературным данным, медиана выживаемости больных после удаления церебральных метастазов составляет 12,8 мес. Таким образом, учет структурно-морфологических особенностей церебральных метастазов позволяет оптимизировать результаты хирургического лечения, снижая частоту локального решидивирования и улучшая выживаемость пациентов с церебральными метастазами рака.

135-е заседание Московского общества нейрохирургов от 28 апреля 2011 г.

1. ИНТРАОПЕРАЦИОННАЯ ФЛЮОРЕСЦЕНТНАЯ ДИАГНОСТИКА И ФОТОДИНАМИЧЕСКАЯ ТЕРАПИЯ У БОЛЬНЫХ С МЕТАСТАТИЧЕСКИМ ПОРАЖЕНИЕМ ГОЛОВНОГО МОЗГА

М.И. Куржупов

Нейроонкологическое отделение № 7 НИИ нейрохирургии им. акад. Н.Н. Бурденко, Москва Московский научно-исследовательский онкологический институт им. П.А. Герцена

Введение. По данным RTOG в настоящее время медиана выживаемости у больных метастатическим поражением головного мозга без лечения составляет в среднем 1 мес., при добавлении кортикостероидов — 2 мес, после облучения всего головного мозга (ОВГМ) — 2—7 мес., при использовании стереотаксической радиохирургии — 5—14 мес., при использовании хирургии или радиохирургии в сочетании с $OB\Gamma M - 6-15$ мес. (в зависимости от RPA-класса). Продолженный рост внутримозговых метастазов развивается у 46-70% больных, подвергшихся хирургическому удалению метастаза, 69% больных, перенесших СРХ, 52% больных, которым было произведено ОВГМ, 28—71% больных, получивших СРХ в сочетании с ОВГМ, 20-58% больных, получивших хирургическое лечение в сочетании с ОВГМ, что, вероятно, связано с инфиль-

тративным ростом внутримозговых метастазов.

Целью исследования является улучшение результатов хирургического лечения метастазов в головной мозг с использованием интраоперационной флуоресцентной диагностики (ФД) и интраоперационной фотодинамической терапии (ФДТ) с препаратом «Аласенс».

Материалы и методы. Для проведения ФД и ФДТ был использован отечественный препарат Аласенс. Для визуального изучения флюоресценции использовали установку «D-Light AF System» Karl Storz (Германия), для проведения локальной флюоресцентной спектроскопии — установку «LESA-01-BIOSPEC» (Россия). Во время операции под контролем ФД производится максимально радикальное удаление опухоли, после чего проводится ФДТ полости удаленной опухоли с использованием диод-

ного лазера «ЛФТ—630—01—БИОСПЕК» (Россия).

Результаты. В исследование включено 74 больных с метастатическим поражением головного мозга, которые были оперированы в ФГУ МНИОИ им. П.А. Герцена Минздравсоцразвития с 2007 по 2010 г. (34 пациента в группе с ФД и ФДТ и 40 пациентов без использования этой методики). Статистически доказано, что группы сопоставимы по полу, возрасту, локализации, размеру и морфологической структуре внутримозговых метастазов, RPA-классам (p>0,05).

У всех больных в группе исследования (группа с ФД и ФДТ) зарегистрировано отсутствие визуально определяемой флюоресценции неизмененной ткани головного мозга, величина ДП варьировала от 0.2 до 2.4 усл. ед. (в среднем -0.8 ± 0.7 усл. ед.). Флюоресценция опухолей была зарегистрирована у 32 из 34 пациентов. Отсутствие флюоресценции опухоли в двух наблюдениях связано с тем, что в одном наблюдении был диагностирован метастаз пигментной меланомы, в другом была нарушена методика введения аласенса (препарат был введен во время операции через назогастральный зонд). Изучены особенности распределения аласенс-индуцированного ППІХ в зависимости от срока между введением аласенса и проведением флюоресцентной диагностики. Показано, что оптимальный срок проведения ФД и ФДТ у больных с метастатическим поражением головного мозга составляет 3—5 ч после введения аласенса. Флюоресцентная контрастность опухоль/нормальная ткань головного мозга в группе больных с интервалом 3—5 ч составляла от 7.5 до 70.5 (в среднем 28,8±20,2), в группе больных с интервалом в 7-8 ч — от 4,4 до 10,2 (в среднем 6,6 \pm 3,1). Полученные данные свидетельствуют о том, что уровень флюоресценции, а соответственно и накопления аласенс-индуцированного ППІХ в опухоли, а также флюоресцентной контрастности опухоль/норма зависят от времени между введением аласенса и проведением ФД. Были проанализированы данные по интенсивности флюоресценции ППІХ в опухоли в зависимости от морфологической структуры метастаза в группе больных со сроком проведения ФД через 3—5 ч после введения аласенса. Вне зависимости от морфологической структуры внутримозговых метастазов зарегистрирована интенсивная флюоресценция всех опухолей с высокой флюоресцентной контрастностью.

Период наблюдения за больными составил от 3 до 36 мес. Продолженный рост метастаза в группе исследования — у 1 из 34 больных (2,85%), в группе без ФД и ФДТ (контрольная группа) — у 13 из 40 пациентов (32,5%); диагностирован в сроки от 1 до 6 мес. В более поздние сроки — по одному больному в каждой из групп. Таким образом, локальный рецидив развился у 5,9% больных в группе исследования и у 35% больных в контрольной группе.

Медиана выживаемости в группе исследования составила 9,5 мес, в контрольной группе — 7 мес. (p<0,01); в 1RPA-класс в группе исследования — 14,5 мес., в контрольной группе 11 мес. (p=0,4); 2 RPA-классе — 11,5 и 7 мес. (p<0,05); в 3 RPA-классе — 8 и 5 мес. (p<0,01) соответственно.

Каких-либо побочных эффектов, связанных с приемом препарата «аласенс», отмечено не было.

Выводы: анализ результатов нашего исследования показал, что оптимальный срок проведения ФД и ФДТ у больных с метастатическим поражением головного мозга составляет 3—5 часов после введения аласенса; хирургическое лечение метастатических опухолей головного мозга с ФД и ФДТ является эффективной и перспективной методикой (локальный рецидив составляет в основной и контрольной группах 5,9 и 35% соответственно, медиана выживаемости — 9 и 6,5 мес. соответственно).

2. ПРИМЕНЕНИЕ ЭНДОСКОПИЧЕСКОЙ АССИСТЕНЦИИ ПРИ УДАЛЕНИИ ОПУХОЛЕЙ МОСТО-МОЗЖЕЧКОВОГО УГЛА

В.К. Пошатаев

Нейроонкологическое отделение № 5 НИИ нейрохирургии им. акад. Н.Н. Бурденко РАМН, Москва

В течение последних 20 лет применение эндоскопических методик в различных областях нейрохирургии, в том числе при вмешательствах в области мостомозжечкового угла (ММУ), получило широкое распространение.

По данным литературы, эндоскопическая ассистенция (ЭА) применяется при лечении неврином слухового нерва, менингитом и крупных кистозных опухолей ММУ, а также эпидермоидных кист верхушки пирамиды височной кости.

В настоящее время применение эндоскопической ассистенции при операциях в области ММУ представляется актуальным по ряду причин. К таковым можно отнести панорамность обзора, усиление освещенности нейрохирургической раны и способность ревизии областей, труднодоступных

при использовании нейрохирургического микроскопа. Указанные выше преимущества характеризуют эндоскопическую ассистенцию как метод, позволяющий существенно повысить эффективность нейрохирургических вмешательств в области ММУ.

Доклад освещает первый опыт применения эндоскопической ассистенции в хирургии опухолей мосто-мозжечкового угла. Наша серия наблюдений насчитывает 5 пациентов, которым при удалении опухолей ММУ проводили ЭА. Опыт проведенных операций показывает, что методика позволяет не только детально визуализировать интраоперационную анатомию ММУ, но и контролировать тотальность удаления опухоли. В дальнейшем мы планируем увеличить серию до 30 случаев и проанализировать полученные данные.

136-е заседание Московского общества нейрохирургов от 2 июня 2011 г.

- 1. Проф. Жан Режис (Jean Regis) MD University Hospital La Timone, Marseille, France —
- «Стереотаксическая радиохирургия в лечении функциональных заболеваний»
- 2. Проф. Бодо Липпитц (Bodo Lippitz) MD Bupa Cromwell Hospital, London, United Kingdom; Karolinska Hospital, Stockholm, Sweden —
- «Стереотаксическая радиохирургия с использованием «Гамма-ножа» в лечении злокачественных опухолей головного мозга»
- 3. Проф. А.В. Голанов заведующий отделением радиологии и радиохирургии НИИ нейрохирургии им. акад. Н.Н. Бурденко РАМН, главный врач Центра «Гамма-нож» —
- «Стереотаксическая радиохирургия и радиотерания в нейрохирургии. Опыт НИИ нейрохирургии им. акад. Н.Н. Бурденко РАМН».

137-е заседание Московского общества нейрохирургов от 27 сентября 2011 г.

Лекции:

- 1. Проф. Манфред Чабичер (M. Tschabitscher), руководитель лаборатории микрохирургической и эндоскопической анатомии Университета г. Вена, Австрия.
- Тема лекции: «Эндоскопическое анатомическое путешествие для нейрохирургов».
- 2. Проф. Ренато Гальцио (R. Galzio), руководитель отделения нейрохирургии госпиталя Сан-Сальваторе, г. Л'Аквила, Италия.

Тема лекции: «Эндоскопическая ассистенция в микронейрохирургии: показания и хирургическая техника».

138-е заседание Московского общества нейрохирургов с приглашением лучевых терапевтов, радиологов и онкологов от 27 октября 2011 г.

ПРИМЕНЕНИЕ СИСТЕМЫ «КИБЕР-НОЖ» В КЛИНИЧЕСКОЙ ПРАКТИКЕ

- 1. к. ф.-м. н. Г. Е. Горлачев, руководитель группы мед. физиков отделения радиологии Института нейрохирургии им. акад. Н.Н. Бурденко РАМН
- «Физические основы и отличительные технические особенности системы «Кибер-нож»»
- 2. Проф. А. Муашевич, Европейский Центр Cyberknife (Кибернож) Мюнхен-Гросхадерн, Германия. «Применение системы «Кибер-нож» в нейрохирургической практике».
- 3. Проф. А.В. Голанов, зав. отд. радиологии и радиохирургии Института нейрохирургии им. акад. Н.Н. Бурденко РАМН.
- «Опыт Института нейрохирургии в использовании системы «Кибер-нож»»

139-е заседание Московского общества нейрохирургов от 24 ноября 2011 г., посвященное памяти проф. Лошакова Валерия Александровича

НЕЙРОФИЗИОЛОГИЧЕСКИЙ МОНИТОРИНГ ПРИ НЕЙРОХИРУРГИЧЕСКИХ ОПЕРАЦИЯХ

- 1. Хирургическое лечение опухолей, расположенных в функционально-значимых зонах больших полушарий головного мозга. История вопроса и современные тенденции к.м.н. Г.Л. Кобяков, к.м.н. В.Ю. Жуков, 7-е нейроонкологическое отделение Института нейрохирургии им. акад. Н.Н. Бурденко РАМН.
- 2. Краниотомия в сознании. Анестезиологическое обеспечение хирургии опухолей больших полушарий мозга.
- проф. А.Ю. Лубнин, А.С. Куликов, отделение анестезиологии и реанимации Института нейрохирургии им. акад. Н.Н. Бурденко РАМН.
- 3. Электрофизиологическое обеспечение хирургии глиом больших полушарий мозга. проф. Г.А. Щекутьев, зав. лабораторией клинической нейрофизиологии Института нейрохирургии им. акад. Н.Н. Бурденко РАМН.